

DrägerSensor[®] & Portable Instruments Handbook 3.1st Edition

This edition is available online only.

Dräger. Technology for Life®

DrägerSensor[®] & Portable Instruments Handbook

3.1st Edition

Dräger Safety AG & Co. KGaA Lübeck, Germany 2016

2 | DrägerSensor[®] & Portable Instruments Handbook

This handbook is intended to be a reference for the users of portable gas detection. However, each individual case of application must be considered more closely. The information has been compiled to the best of our knowledge. However, the Dräger organization is not responsible for any consequence or accident which may occur as the result of misuse or misinterpretation of the information contained in this handbook.

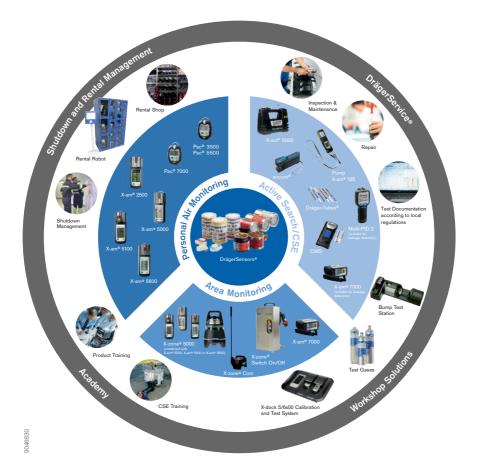
The instructions for use may not always correspond to the data given in this book. For a full understanding of the performance characteristics of the measurement devices and for the use of Dräger products, only the instructions of use enclosed with the product shall apply and any inconsistencies between this handbook and the instructions for use shall be resolved in favour of the instructions for use. The user should carefully read and fully understand the instructions for use prior to the use of the measurement devices.

The use of descriptive names, trade names, trademarks, etc., even if not explicitly marked, does not justify the assumption that such names are exempt from trademark and brand protection and therefore may be used freely by anyone.

Technical data is subject to modifications.

Publisher: Dräger Safety AG & Co. KGaA DrägerSensor[®] & Portable Instruments Handbook Lübeck, Germany 2016

© 2016 Dräger Safety AG & Co. KGaA Revalstrasse 1 · 23560 Lübeck · Germany All rights reserved, in particular the right of reproduction, dissemination, and translation.


Printed in Germany Press date: 2016

ISBN 978-3-00-030827-7

CONTENTS

1	Introduction	7
2	Properties of dangerous gases and vapors	8
- 2.1	Gases – what is a gaseous matter?	8
2.2	Vapors – aren't they gases, too?	9
2.3	Our atmosphere	10
2.4	Ex, Ox, Tox – gas hazards!	12
2.5	Toxic gases and vapors	13
2.6	Flammable gases and vapors	14
2.7	LEL and preventative explosion protection	16
2.8	Flash point of flammable liquids	17
2.9	Concentration and their calculation	18
3	Introduction to portable instruments	19
3.1	Application areas for portable gas detection	19
3.2	Requirements for gas detection instruments	21
3.3	Explosion protection	23
3.4	ATEX 137 - directive 1999/92/EC	24
3.5	ATEX 95 - directive 2014/34/EU	26
3.6	Laws and regulations in USA, Canada, and Mexico	30
3.7	Single-gas measuring instruments	36
3.8	Multi-gas measuring instruments	44
4	Introduction to sensor technology	58
4.1	Selecting the proper measurement method	59
4.2	Overview of detectable vapors and gases	60
4.3	Dräger CatEx sensors	78
4.4	Dräger infrared sensors	98
4.5	Dräger PID sensors	118
4.6	Electrochemical sensors	122
	General Instructions for DrägerSensors® XS, XS R, XS 2 and XXS	124
	DrägerSensor [®] XS	126
	DrägerSensor [®] XXS	188
4.7	Explanation to the sensor data	262

5	Accessories	266
5.1	Introduction	267
5.2	The bump test	268
5.3	Devices for calibration and functional testing	269
5.4	Manual bump test	270
5.5	The Dräger Bump Test Station	270
5.6	Dräger X-dock – more than just a test station	271
5.7	Test gas and accessories	271
5.8	Pressure reducer	273
5.9	Pumps	274
5.10	Probes	275
5.11	Hoses	278
5.12	Dräger CC-Vision Basic	280
5.13	Dräger GasVision	280

1 Introduction

Dear readers,

This is the third edition of our DrägerSensor and gas detector manual. Since its first edition, for many of you this booklet has become an essential companion that provides valuable assistance in your everyday working life. We are very proud of the extensive positive feedback and always appreciate suggestions for improvement that we receive.

Integrated approaches based on the centrepiece of every gas detector, the sensor, have become necessary in the past few years. Our focus is on safety, reducing operating costs and customer benefits.

We believe that we need to offer you more than individual products – you expect an integrated and connected system. This does not just start with the measuring task, but when charging the device, daily testing, hand over, the actual measuring task using the right device and accessories as well as subsequent return and maintenance. The focus is also increasingly on assessing and managing entire groups of devices, especially the identification of risks, compliance with maintenance intervals, the maintenance itself as well as the evaluation of the useful life and readiness for operation. These are the challenges that we set ourselves.

We hope that you are happy with our new edition and look forward to receiving your ideas and suggestions for improvement – and naturally also positive feedback to our reference book.

Your Product Management for Portable Gas Detection

2 Properties of dangerous gases and vapors

Flammable and toxic gases and vapors occur in many areas. It is important to recognize the danger they pose – and that is the purpose of gas detection and warning devices. This handbook is meant to give a basic introduction to gas detection technology, measuring principles and safety concerns.

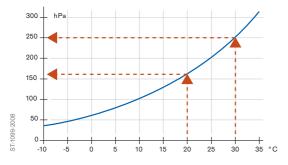
2.1 Gases - what is a gaseous matter?

Matter at a temperature above its boiling point is referred to as a gas. In terms of the normal human environment, this means that all those substances whose boiling points at normal atmospheric pressure are below 20°C (68° F), are gases. The lightest gas is hydrogen (H_2 , fourteen times lighter than air), the heaviest gas (around ten times heavier than air) is tungsten hexafluoride (WF₆).

Under normal conditions, one cubic centimeter of gas contains thirty trillion molecules, whose average distance from one another is only around 3 nanometers. They move through space at between several hundred and several thousand meters per second but, at the same time, they collide with other molecules many billions of times each second. With the result that they only cover around 50–100 nanometers between impacts, and they continuously change their direction and transfer energy to the other molecules with which they collide.

The result is a completely random molecular motion which in macroscopic terms can be measured as temperature (average kinetic energy of all the molecules) and pressure (the average force exerted on a surface by all the molecules hitting it), as well as volume (spatial extent). Pressure, temperature, and volume are always in a fixed relationship to one another, which is governed by external conditions. In an ideal situation, they obey what is known as the "ideal gas law," namely:

- At a constant pressure, their volume changes in proportion to their temperature their volume increases when heated;
- If the volume remains the same (for example, in a closed container), then their pressure changes in proportion to their temperature – for example, the pressure inside a container increases when heated;
- At a constant temperature, pressure changes inversely proportion to volume for instance, the interior pressure rises when gas is compressed.


The extremely fast random movement of gas molecules is also the reason why they mix freely with other gases, never to become seperated again. This molecular behavior also explains the tendency of molecules to become less concentrated (diffusion), something which plays an important role in gas detection technology. Generally speaking, these processes become faster, the more quickly the molecules move (in other words, the hotter the gas is) and the lighter the molecules are (in other words, the lighter the gas is).

2.2 Vapors - aren't they gases, too?

Unlike gas – of which there are only perhaps between 200 to 300 – the word vapor is used to describe the gaseous state of a material below its boiling point. Vapor is always in equilibrium with its fluid (and sometimes solid) phase – it condenses and vaporizes according to the temperature. This is most familiar to us with water; when moist air near the ground cools down at night, ground mist forms (condensation) – but the warmth of the morning sun dissipates the mist (evaporation).

In a closed container, a maximum vapor concentration always exists above the surface of a liquid, and this concentration is dependent on the temperature of the liquid. On a microscopic level, the vapor is a result of the random movement of the liquid's molecules combined with their ability to overcome the surface tension and mix with the air molecules above the surface.

Every liquid has a certain characteristic vapor pressure, which depends on its temperature and reaches atmospheric pressure when the liquid reaches its boiling point. A graphic depiction of this relationship is known as a vapor pressure curve, and it shows the maximum possible vapor concentration at any given temperature.

Vapor pressure curve of liquid n-hexane

If you divide the maximum possible vapor pressure by the ambient pressure, you are given the saturation concentration in Vol.-% (volume percent). Hexane gas at 20°C or 68° F (vapor pressure 162 hPa or 2.35 psi) and an ambient pressure of 1,000 hPa (14.5 psi) has a maximum possible concentration of 16.2 Vol.-%.

2.3 Our atmosphere

Our atmosphere extends far out into space, getting less dense the more it stretches. The blue color of the sky is caused by the scattering of the sun's rays on the air molecules in the atmosphere. The sky is actually already black by the time you reach a height of around 21 km (13 miles). If you were to subject the entire atmosphere to an even pressure of 1013 hPa (14.7 psi), then it would only be 8 km (5 miles) high, and the UV-absorbing stratospheric ozone layer would be a mere 3 mm (0.11 in.) high.

Typical composition of the earth's atmosphere in ppm:

	Composition			
Gas	dry	humid		
Principal gases				
N ₂ – nitrogen	780,840	768,543		
O ₂ – oxygen	209,450	206,152		
H ₂ O – water vapor	0	15,748		
Ar – argon	9,340	9,193		
CO ₂ – carbon dioxide	340	335		
Trace gases				
Ne – neon	18	18		
He – helium	5	5		
CH ₄ – methane	1.8	1.8		
Kr – krypton	1.1	1.1		
H ₂ – hydrogen	0.5	0.5		
N ₂ O – nitrous oxide	0.3	0.3		
CO – carbon monoxide	0.09	0.09		
Xe – xenon	0.09	0.09		
O ₃ – ozone	0.07	0.07		
Other trace gases	3.05	3.0		
Total	1,000,000	1,000,000		

1 Vol.-% = 10,000 ppm; assumption for humid air: 68% r.h. at 20°C (68°F)

The earth's atmosphere has a mass of around 5 quadrillion metric tons (5.235×10^{18} kg), which weighs down on an area on the earth's surface of 0.507×10^{15} m². This creates an atmospheric pressure on the earth's surface of 10,325 kg/m², which corresponds to normal atmospheric pressure: 1,013 hPa (14.7 psi). Atmospheric pressure decreases with increasing altitude:

Altitude m/ft.	Atmospheric pressure	Altitude m/ft. Atmospheric pressure		
	hPa/psi		hPa/psi	
-1.000 (-3280.8)	1.148 (16.6)	2.000 (6.561,7)	795 (11.5)	
-500 (-1640.4)	1.078 (15.6)	3.000 (9.842,5)	701 (10.2)	
0 (0)	1.013 (14.7)	4.000 (13.123,3)	616 (8.9)	
500 (1640.4)	952 (13.8)	5.000 (16.404,2)	540 (7.8)	
1.000 (3280.8)	900 (13.1)	6.000 (19.685,0)	472 (6.8)	
1.500 (4921.2)	840 (12.2)	8.000 (26.246,7)	356 (5.2)	

The number of molecules in a given volume decreases with decreasing atmospheric pressure, which means that the results produced by partial pressure-measuring sensors are always dependent on the atmospheric pressure.

More than 78 Vol.-% of the earth's atmosphere is nitrogen, which is fully inert, and although available in excess, can not even be used as a much-needed fertilizer for plants. In contrast, highly reactive oxygen is fundamental to our breathing – more than that: it is the foundation of almost all life.

Just under 21 Vol.-% of the atmosphere is oxygen. A lack of oxygen is life-threatening – and cannot be perceived by the human senses.

Oxygen deficiency is generally caused by the release of an inert gas, which then in turn displace oxygen. Since the atmosphere is only around one fifth oxygen, the oxygen concentration is only reduced by around one fifth of the concentration of the inert gas. For example, if 10 Vol.-% of helium is released into the air then oxygen is reduced by 2 Vol.-% and the level of nitrogen by 8 Vol.-%. Because liquid nitrogen (-196° C or -321° F) is frequently used in industry, its evaporation can quickly cause a dangerous oxygen deficiency.

Oxygen enrichment (e.g. more than 25 Vol.-%) cannot be perceived by humans, but have severe consequences with respect to the flammability of materials, and may even cause autoignition. This is why explosion protection relates exclusively to atmospheric oxygen concentration.

Oxygen concentration in Vol%	Oxygen partial pressure in hPa/psi	Symptoms
Less than 17	Less than 170/2.5	Early stage of danger
		due to oxygen deficiency
11 to 14	110 to 140/1.6 to 2.0	Unnoticed decrease in physical and
		mental performance
8 to 11	80 to 110/1.2 to 2.0	Possible sudden loss of
		consciousness without warning
		after a certain period of exposure
6 to 8	60 to 80/0.9 to 1.2	Loss of consciousness within a few
		minutes - resuscitation possible if
		performed instantly
Less than 6	Less than 60/0.9	Immediate loss of consciousness

At what level does it become dangerous?

2.4 Ex, Ox, Tox – gas hazards!

Gases and vapors are almost always dangerous. If gases are not present in the atmospheric composition to which we are accustomed and which we can breathe, then safe breathing is threatened. Furthermore, all gases are potentially dangerous in their liquid, compressed, or normal state – the decisive factor is their concentration.

There are basically three categories of risk:

- Risk of explosion (ex) caused by flammable gases
- Oxygen (ox)

Risk of suffocation through oxygen deficiency Risk of increased flammability due to oxygen enrichment

- Risk of poisoning (tox) by toxic gases

Without equipment to assist, mankind is not in a position to detect these risks early enough to enable preventative steps from being taken. And, with a few exceptions, our nose has proven an extremely unreliable warning instrument.

For example, hydrogen sulfide can be detected in low concentrations because it smells of rotten eggs. However, the nose can no longer perceive the lethal, high concentrations of hydrogen sulfide. Many fatal accidents have occured because people have fled into what they thought was the safe, odour-free area.

Even harmless gases such as argon, helium or nitrogen can also become dangerous if they are suddenly released, displacing the oxygen that is essential to life. Then there is risk of suffocation. An oxygen concentration of less than six Vol.-% is deadly. An excess of oxygen increases the risk of fire, and can even cause flammable materials to self-ignite. By igniting, flammable gases and vapors can not only cause considerable damage to industrial plants and equipment, they can also threaten people's lives.

Therefore, it is essential to be able to detect Ex, Ox and Tox risks reliably, and to protect human life, industrial plants and equipment, as well as the environment by taking the appropriate measures. Whether Dräger-Tubes[®] or portable gas detectors, Dräger offers you individual solutions that meet your needs and enable you to counter gas risks professionally.

2.5 Toxic gases and vapors

The toxicity of gases and vapors used in industrial processes is defined in laboratory experiments by determining the LC_{50} rate. On that basis, and together with other scientific tests and experiments relating to occupational health at the workplace, authorized commissions in several countries make recommendations of limit values, which are legally binding. In Germany, this is the Federal Institute for Occupational safety and Health (BAuA).

This maximum allowable concentration in the air means that workers will not suffer any detrimental affects to their health if they spend their entire working lives breathing in gas concentrations, which do not exceed that level. This, however, must be assured.

Limit	Selected substances
value	to which this limit value applies
5,000 ppm	carbon dioxide
1,000 ppm	propane, butane
500 ppm	acetone
200 ppm	methyl ethyl ketone (MEK)
100 ppm	butanol
50 ppm	n-hexane, toluene
20 ppm	acetonitrile
10 ppm	chlorobenzene
5 ppm	diethylamine
1 ppm	1.1.2.2-tetrachloroethane
500 ppb	chlorine
200 ppb	methyl chlorformate
100 ppb	chlorine dioxide
50 ppb	glutaraldehyde
10 ppb	methyl isocyanate

Status 2010, according to TRGS 900 (Germany)

T+ Very toxic $LC_{50} < 0.5 \text{ g/m}^3$

Arsine, boron trichloride, boron trifluoride, bromine, diborane, fluorine, hydrogen cyanide, hydrogen fluoride, hydrogen phosphide, hydrogen sulfide, nitrogen dioxide, nitrogen monoxide, ozone, phosgene, sulfur tetrafluoride, tungsten hexafluoride

T Toxic LC₅₀ = 0.5 ... 2.0 g/m³

Acetonitrile, ammonia, benzene, carbon disulfide, carbon monoxide, chlorine, cyanogen, hydrogen chloride, methanol, methyl bromide, nitrogen trifluoride, sulfur dioxide

LC₅₀ (LC stands for "lethal concentration") is the gas concentration in air, which – when inhaled over a given time period (usually four hours) – kills 50% of experimental animals (normally white laboratory rats).

2.6 Flammable gases and vapors

Flammable gases become more dangerous when they have a relatively low LEL (lower explosion limit) or flash point. The flash point is defined by the liquid's temerature-dependent vapor pressure and it's LEL.*

Vapor	LEL Vol%	LEL g/m³	Flash point in °C/°F	Vapor pressure at 20°C (68° F) in mbar	Ignition temp. in °C/°F
acetone	2.5	60.5	< -20/-4	246	535/995
acrylonitrile	2.8	61.9	-5/23	117	480/896
benzene	1.2	39.1	-11/12	100	555/1031
n-butanol	1.4	52.5	35/95	7	325/617
n-butyl acetate	1.2	58.1	27/81	11	390/734
n-butyl acrylate	1.2	64.1	37/99	5	275/527
chlorobenzene	1.3	61.0	28/82	12	590/1094
cyclohexane	1.0	35.1	-18/-0,4	104	260/500
cyclopentane	1.4	40.9	-37/-60	346	320/608
1.2-dichloroethane (EDC)	4.2	255.7	13/55	87	440/824
diethyl ether	1.7	52.5	-45/-40	586	175/374
1.4-dioxane	1.4	69.7	11/52	38	375/707
epichlorhydrin	2.3	88.6	28/82	16	385/725
ethanol	3.1	59.5	12/54	58	400/752
ethyl acetate	2.0	73.4	-4/25	98	470/878
ethylbenzene	1.0	44.3	23/73	10	430/806
n-hexane	1.0	35.9	-22/-8	160	230/464
methanol	6.0	80.0	9/48	129	440/824
1-methoxy-2-propanol	1.8	67.6	32/90	13	270/518
methyl ethyl ketone (MEK)	1.5	45.1	-10/14	105	475/887
methyl methacrylate	1.7	70.9	10/50	40	430/806
n-nonane	0.7	37.4	31/88	5	205/401
n-octane	0.8	38.1	12/54	14	205/401
n-pentane	1.1	42.1	-40/-40	562	260/500

* LEL values may differ regionally. The operator has to ensure to use the relevant value.

Vapor	LEL Vol%	LEL g/m³	Flash point in °C/°F	Vapor pressure at 20°C in mbar	Ignition temperature in °C/°F
i-propanol (IPA)	2.0	50.1	12/54	43	425/797
propylene oxide	1.9	46.0	-37/-35	588	430/806
styrol	1.0	43.4	32/90	7	490/914
tetrahydrofuran (THF)	1.5	45.1	-20/-4	173	230/446
toluene	1.1	42.2	6/43	29	535/995
xylene (isomer mixture)	1.0	44.3	30/77	7	465/869

Gas	LEL	LEL	Ignition
	Vol%	g/m³	temperature in °C/°F
acetylene	2.3	24.9	305/581
ammonia	15.4	109.1	630/1166
1,3-butadiene	1.4	31.6	415/779
i-butane	1.5	36.3	460/860
n-butane	1.4	33.9	365/689
n-butene (butylene)	1.5	28,1	360/680
dimethyl ether	2.7	51.9	240/464
ethene (ethylene)	2.4	28.1	440/824
ethylene oxide	2.6	47.8	435/815
hydrogen	4.0	3.3	560/1040
methane	4.4	29.3	595/1103
methyl chloride	7.6	159.9	625/1157
propane	1.7	31.2	470/878
propene (propylene)	1.8	31.6	485/905

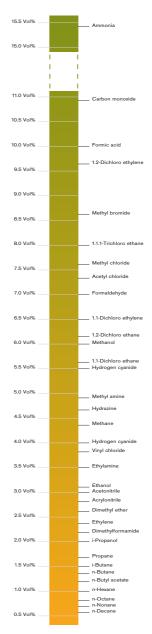
Source: PTB list from the Physikalisch-Technische Bundesanstalt (PTB is the national metrology institute providing scientific and technical services). Values from NIOSH, IEC and others may differ. Please consider regional regulations.

Only flammable liquids have a flash point.

By definition, flammable gases do not have a flash point.

2.7 LEL and preventative explosion protection

Flammable gases and vapors can form ignitable mixtures when combined with air, but the ratio of flammable gas to oxygen (or air) must lie within certain limits.


The lower explosion limit (LEL) is defined as the concentration of combustion gas (stated in Vol.-%) at which, under standardized conditions, the gas-air mixture can be ignited and will continue to burn on its own accord. The LEL of all known flammable gases and vapors lies in a range of approximately 0.5 to 15 Vol.-%. The LEL of hydrogen in air, for instance, is 4 Vol.-%. Accordingly, a gas sample containing 2 Vol.-% of hydrogen in air can definitely not be ignited.

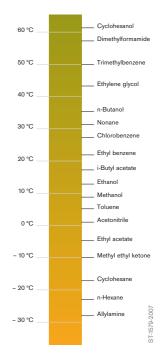
Concentration limitation

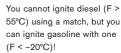
This behavior of gases and vapors has important consequences for practical explosion protection. If a flammable gas cannot be ignited below it's LEL, then we can protect people against

explosions by measuring the gas concentrations continuously and using appropriate measures to ensure that concentrations never exceed a level such as half the LEL (50% LEL).

This method of preventative explosion protection is often referred to as a primary measure. What is prevented is not the ignition of the gas, but the very formation of an atmosphere which can explode. The preferred method of measuring these concentrations is to use infrared or catalytic bead sensors, which, when used for this purpose, must fulfill certain safety requirements.

ST-1577-2007


2.8 Flash point of flammable liquids


Although we speak of flammable liquids, in fact, the liquid state is not flammable. It is the vapor, which can form a flammable mixture together with the oxygen in the air. Both the volatility of this vapor and its lower explosion limit (LEL) comprise the measure of its potential danger. This is described by what is known as the flash point.

To be able to ignite at all, the concentration of vapor above the surface of the liquid must exceed the LEL. Whether it does so or not depends on how much vapor is produced. This, in turn, depends on what is known as the vapor pressure, which depends upon the temperature of the liquid. In safety terms, this is described by defining a flash point (F). The flash point is the temperature at which sufficient vapor forms to create a vapor-air mixture, which can be ignited in a standardized

apparatus. If a flammable liquid's flash point is above 50° C (122° F), then it definitely cannot be ignited at a temperature of 30° C (86° F).

Therefore, the lower the flash point of a flammable liquid, the more dangerous it is. Because the vapor of a flammable liquid is not ignitable below its flash point, preventative explosion protection can consist of using liquids whose flash points are significantly higher than the ambient temperature. This is often done in practice, but it does have the disadvantage – when using such liquids as solvents – that large amounts of energy are required to evaporate them. Gases by definition do not have a flash point, because under normal conditions they do not exist in liquid form.

2.9 Concentration and their calculation

Concentration is defined as the content of a substance within a reference substance. When measuring harmful substances in the air, the quantity of that substance is defined in terms of a concentration in relation to the air. The right units must be chosen to produce useful figures for defining the concentration. High concentration is generally given as Vol.-% – in other words, one part of a substance to 100 parts of air. Air, for example, consists of 21% Vol.-% oxygen, which means that 100 parts of air contain 21 parts of oxygen. Lower concentration levels are measured in ppm = parts per million (mL/m³), or ppb = parts per billion (μ L/m³). A concentration of one ppm means there is one part of a substance in one million parts of air (the rough equivalent to one sugar cube inside a gasoline tanker). A concentration of one ppt refers to one part of a substance in one billion parts of air (equivalent to five people out of the entire population of the earth). Converting these very low concentrations into Vol.-% produces the following simple relationship:

1 Vol.-% = 10,000 ppm = 10,000,000 ppb

Alongside gaseous components, the air can also contain 'dissolved' solid or liquid substances, known as aerosols. The size of droplets or particles borne by the air is very small, which means that measuring them in terms of volume is not very useful. Aerosol concentrations are therefore measured in mg/m³.

		Vol%	ppm	ppb
Vol% =	10 L/m ³ 1 cL/L	1	10 ⁴	10 ⁷
ppm =	mL/m³ µL/L	10 ⁻⁴	1	10 ³
ppb =	µL/m³ nL/L	10 ⁻⁷	10 ⁻³	1

		g/L	mg/L	mg/m³
g/L =	10 L/m ³ 1 cL/L	1	10 ³	10 ⁶
mg/L =	mL/m³ µL/L	10 ⁻³	1	10 ³
mg/m ³	µL/m³ nL/L	10 ⁻⁶	10 ⁻³	1

Converting mg/m³ into ppm

$$c_{[ppm]} = \frac{Molar volume}{Molar mass} c c_{[mg/m^3]} = \frac{Molar mass}{Molar volume} c$$

The molar volume of any gas is 24.1 L/mol at 20° C (68° F) and 1,013 hPa (14.7 psi); the molar mass of a specific gas should be adapted dependent on that gas.

3 Introduction to portable instruments

In the beginning, there was the canary. These little finches would warn miners about dangerous gases underground: if they stopped singing, the miners had to get out quick. Crude and inaccurate methods of determining gas concentrations in the atmosphere like this one have long been consigned to history.

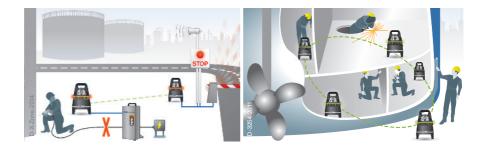
Nowadays, precise measuring instruments monitor the concentration of dangerous gases and flammable vapors. The latest of these are compact, small, robust and flexible single-gas and multi-gas units. Gases and vapors are not always necessarily harmful; after all, the earth's atmosphere is made of them. It is not until their concentration exceeds critical levels (risk of poisoning and explosion) or drops below certain levels (risk of suffocation through oxygen deficiency) that they can become a threat. This is why portable gas detection devices are used in all kinds of ways throughout many branches of industry. Scenarios range from individual employees and small groups of workers – all the way to large-scale operations such as the industrial shutdown of an entire petrochemical plant. Instruments measuring the various dangerous gases have to perform reliably under changing conditions. This can place great demands on reliability, durability, and flexibility, because in the end the detection equipment is directly responsible for the safety and health of workers. Not every unit may be used in every working environment. Before a device is used, you have to determine whether its specifications are sufficient. These requirements are all laid down in various standards and directives.

3.1 Application areas for portable gas detection

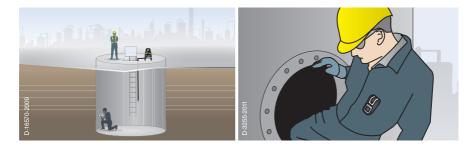
Portable gas detection instruments are subject to very diverse requirements. Different application areas require solutions tailored to the measurment task, which also take into account the respective ambient conditions.

It is generally possible to distinguish between the following application areas:

Personal monitoring


- These devices are designed to warn the wearer about gas risks in the immediate vicinity. For this reason, they are usually worn on work clothing. The basic requirements that these units therefore have to fulfill are wearing comfort, durability, and reliability. Continuously measuring single-gas and multi-gas instruments are suitable for this kind of work.

20 | Portable instruments


Area monitoring

- In contrast to the personal gas detector area monitors will be placed at central or critical locations to monitor workspaces optimally and independently from persons.
- For this, the basic requirements are robustness, stability and excellent alarm awareness (optical and acoustic) as well as a longest possible battery runtime. Increased security level can be achieved by connecting the area monitors to wireless alarm chains and by transferring the measurement values from instrument to instrument as well as to mobile terminals.

Confined space entry

- Maintenance and repair work often require people to climb into confined spaces. These areas of work can be especially dangerous because of the lack of space, the lack of ventilation, and the presense or development of hazardous substances. A clearance measurement is required before entry. Multi-gas instruments are used together with corresponding pumps and accessories such as hoses and probes. After a successful measurement where no hazards have been found, the same instruments can be used for continuous personal monitoring while working in the confined space.

Leak detection

- Leakages can occur wherever gases or liquids are stored or transported. It is important to identify leakages quickly so that the appropriate measures can be taken to avert harm to people, the environment, and the facility. Detection devices combined with corresponding pumps must be able to respond quickly so as to detect small changes in concentration. High levels of reliability are another minimum requirement for these measuring instruments.

3.2 Requirements for gas detection instruments

As safety products, gas detection devices for industrial use must fulfill the statutory requirements (explosion protection, electromagnetic compatibility), as well as other requirements, so that their quality and reliability remains assured even under tough conditions.

Explosion protection standards:

Design stipulations ensure that the gas measuring instrument does not become a source of ignition itself. Globally accepted standards include CENELEC (ATEX), CSA, UL, EAC, etc.

Protection ratings as defined by EN 60529 (IP Code)

The IP code provides information about the degree to which a casing provides protection against foreign objects and water.

IP = International Protection/Ingress Protection Extract based on DIN EN 60529:

	Protection against solid foreign objects	Second index number	Protection against water
5	Protection against contact. Protection against interior dust deposits	5	Protection against projected water from any angle
6	Complete protection against touch. Protection against dust penetration	6	Protection against penetrating water during temporary flooding
		7	Protection against penetrating water during temporary immersion
D-16408-2009			Protection against penetrating water during prolonged submersion

Protection class IP 67 provides a high degree of robustness, although this can have negative consequences in terms of vapor permeability. The MEWAGG research group ("Mess- und Warngeräte für gefährliche Gase") – part of BG Chemie (Germany's statutory employment accident insurance fund for the chemical industry) – therefore advises users who need to detect not only gases like methane and propane, but also higher hydrocarbons and solvents, to check the suitability of equipment with the manufacturer. This can, for example, involve a detection equipment assessment under ATEX.

Quality of measurement functions

Maintaining a predefined detection quality, even under extreme ambient conditions (temperature, pressure, wind, moisture, vibration, and so on)

EN 45 544	– for toxic gases and vapors
EN 50 104	– for oxygen
EN 60 079-29-1	- for flammable gases and vapors

Electromagnetic compatibility as defined by EN 50270

Electrical and electronic devices should not be influenced or interfered with by other electrical, magnetic, or electromagnetic fields – and vice versa. For instance, this means that using a mobile phone or a radio in the immediate vicinity of gas detection devices should not interfere with the instrument's detection signal, nor should the instrument interfere with the phone. EMC guidelines and standards define means of proving and confirming a device's insensitivity to interference and low level of interference output. Simply complying with the requirements of a standard or guideline may not be sufficient depending on the various

operating and ambient conditions. Rugged industrial applications require much more robust devices. Dräger pays special attention to these requirements, for example, with an additional in-house "robustness test."

RoHS and REACH

The requirements for materials and substances used must also be considered during the development and production of gas detection equipment. The European RoHS (Restriction of Hazardous Substances) Directive requires that six particularly dangerous substances may not be contained in electrical and electronic devices. The REACH Regulation (Registration, Evaluation, Authorization, and Restriction of Chemicals) requires that the presence of particularly hazardous materials in products must be disclosed. Dräger seeks to avoid such substances as far as possible within the scope of technical conditions and meets the relevant directives and regulations in this regard.

3.3 Explosion protection

Industrial processes very often involve flammable substances, including sometimes flammable particles. In these areas, flammable gases and vapors can sometimes be released on a process-related basis (such as relief valves) or by unforeseen incidents (breakdowns). As a means of prevention, areas such as these are designated EX areas ("zones") in which only equipment which is reliably protected against ignition may be used.

Explosion protection is standardized worldwide; IEC (international), CENELEC (European) and NEC 505 North American standards are similar, and based on the three-zone concept which is rapidly gaining acceptance in the USA.

Zone in IEC, NEC 505	Dangerous, explosive atmosphere exists
and CENELEC	
Zone O	constantly, regularly or long-term
Zone 1	occasionally
Zone 2	rarely and for short periods

American explosion protection compliant with NEC 500 is still typically based on the dual division concept:

Division in	Dangerous explosive
NEC 500	atmosphere exists
Division 1	constantly or occasionally
Division 2	rarely and for short periods

3.4 ATEX 137 - directive 1999/92/EC

ATEX stands for ATmospheres EXplosibles. This directive has been binding on all systems since July 30, 2006, and is addressed to employers. It describes minimum requirements for the protection of employees' health and safety in areas at risk of explosion.

The directive pursues the following targets:

- Prevent the formation of explosive atmospheres; if this is not possible
- Prevent the ignition of explosive atmospheres; if this is not possible
- Reduce the harmful effects of an explosion to a tolerable minimum.

Employers are obliged to assess the risk of explosion in the relevant areas. Zone categories are defined by answering the question: how likely is it that an explosive atmosphere (gas, vapor, dust) will form in the areas concerned?

ZONE DEFINITIONS IN ATEX 137, ANNEX I, 2

	Areas at risk of explosion are divided into the following zones according to the likelihood of
	an explosive atmosphere forming there:
Zone 0	Area in which explosive atmospheres comprising mixtures of air and flammable gases,
	vapors, and aerosols are present constantly, frequently, or over long periods of time.
Zone 1	Area in which, under normal operation, an explosive atmosphere can occasionally form as a
	mixture of air and flammable gases, vapors, or aerosols.
Zone 2	Area in which, under normal operation, an explosive atmosphere consisting of a mixture of
	air and flammable gases, vapors, or aerosols normally does not form - or, if so, only briefly.
Zone 20	Area in which explosive atmospheres in the form of clouds of combustible dust in the air are
	present constantly, frequently, or over long periods of time.
Zone 21	Area in which, under normal operation, an explosive atmosphere can occasionally form as
	clouds of combustible dust in the air.
Zone 22	Area in which, under normal operation, an explosive atmosphere in the form of a cloud of
	combustible dust in the air normally does not form – or, if so, only briefly.

Depending on the zone identified, only certain gas measuring instruments may be used there (this table links the categories of ATEX 95 with the zones in ATEX 137):

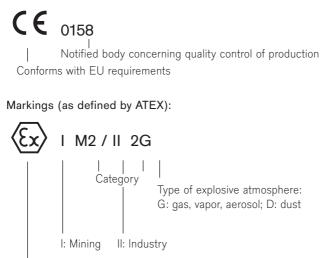
Permitted use	Gas, vapor (G)	Dust (D)
Instruments in category 1	Zone 0, 1, 2	Zone 20, 21, 22
Instruments in category 2	Zone 1, 2	Zone 21, 22
Instruments in category 3	Zone 2	Zone 22

(For instrument categories, see section 3.5 ATEX 95)

The instrument group and temperature category requirements are then determined by defining the flammable gases, vapors, aerosols, and dusts used, along with their ignition temperatures.

Extract from section 2.6 "Flammable gases and vapors"

Gas	LEL	LEL	Ignition
	Vol%	g/m³	temperature in °C/°F
acetylene	2.3	24.9	305/581
ammonia	15.4	109.1	630/1166
1,3-butadiene	1.4	31.6	415/779
dimethyl ether	2.7	51.9	240/464
ethene (ethylene)	2.4	28.1	440/824
ethylene oxide	2.6	47.8	435/815
hydrogen	4.0	3.3	560/1040
i-butane	1.5	36.3	460/860
methane	4.4	29.3	595/1103
methyl chloride	7.6	159.9	625/1157
n-butane	1.4	33.9	365/689
n-butene (butylene)	1.2	28,1	360/680
propane	1.7	31.2	470/878
propene (propylene)	1.8	31.6	485/905


Vapor	LEL	LEL	Flash poin	t Vapor pressure	Ignition temperature
	Vol%	g/m³	in °C/°F	at 20°C (68°F) in mba	ar in °C/°F
isopropyl alcohol (IPA)	2.0	50.1	12/54	43	425/797
propylene oxide	1.9	46.0	-37/-35	588	430/806
styrol	1,0	43.4	32/90	7	490/914
tetrahydrofuran (THF)	1.5	45.1	-20/-4	200	230/446
toluene	1.1	42.2	6/43	29	535/995
xylol (isomer mixture)	1.0	44.3	25/77	7	465/869

3.5 ATEX 95 - directive 2014/34/EU

This directive applies to, among others, the manufacturers of gas detection and warning instruments. It describes the requirements that must be fulfilled by gas detection devices used in areas at risk of explosion, and which incorporate their own potential ignition sources.

The CE symbol of conformity – coupled with information about the equipment category (described the zones of the area at risk of explosion in which the gas warning instrument may be used as an electrical device) may look like this:

Markings as defined by 2014/34/EU (ATEX 95)

Complies with directive 2014/34/EU

Equipment groups I and II indicate in which area the device may be used:

- I = Mining
- II = Industry

Information then follows about which equipment category the gas detection device satisfies:

Category 1	Very high level of safety, sufficient safety provided by two protective
	measures or in the event of two faults
Category 2	Sufficient safety in the event of frequent equipment faults or one
	breakdown
Category 3	Sufficient safety if operation is fault-free

Finally, the atmosphere is indicated (G: gas, vapor, aerosol or D: conductive and non-conductive combustible dusts).

The designation indicates the zones in which the instrument may be used (example for industry).

Ex area:	Zone 0	Zone 1	Zone 2	Zone 20	Zone 21	Zone 22
Ex atmosphere:	constantly,	occasionally	normally	constantly,	occasionally	normally
	long-term		not or only	long-term		not or only
	or frequently		short-term	or frequently		short-term
ll 1 G	yes	yes	yes	no	no	no
II 2 G	no	yes	yes	no	no	no
II 3 G	no	no	yes	no	no	no
II 1 D	no	no	no	yes	yes	yes
II 2 D	no	no	no	no	yes	yes
II 3 D	no	no	no	no	no	yes

Explosion protection marking in EN 60079

EPL (Equipment Protection Level) G = gas; D = dust Ex d ia IIC T4 Gb — a = Zone 0; b = Zone 1; c = Zone 2

I _____temperature category

- i = Intrinsic safety
- a = covers 2 faults
- b = covers 1 fault
- c = covers normal operation

Explosion group I: mining, II: everything except mining Subgroups IIA, IIB, and IIC: categorization of gases depending on their ignitibility

| Ignition protection: Pressure-resistant encapsulation Explosion protected equipment

The requirements for electrical equipment to be used in hazardous areas are outlined in the standard series EN 60079. In addition to the requirements, markings are defined as well. A marking according to ATEX as well as a marking to indicate the equipment protection level (EPL = Equipment Protection Level) is required. With the introduction of the EPL, it is now possible to allocate which device may be used in which explosive atmosphere or area outside of Europe as well.

Ignition protection types provide information about the protective measures incorporated into a device:

Abbreviation	CENELEC standard	Ignition protection type
Gas		
	EN 60079-0	General requirements
Eхо	EN 60079-6	Oil immersion
Ехр	EN 60079-2	Pressurized encapsulation
Ex m	EN 60079-18	Encapsulation
Ex q	EN 60079-5	Powder / Sand filling
Ex d	EN 60079-1	Explosion/Flame-proof
		encapsulation
Ex e	EN 60079-7	Increased safety
Ex ia	EN 60079-11	Intrinsic safety (also for dust)
Ex ib		ia required for Zone 0 & 20
Ec ic		ib sufficient for Zone 1 & 21
		ic sufficient for Zone 2 & 22
Dust		
Ex ta	EN 60079-31	ta required for Zone O
Ex tb		tb required for Zone 1
Ex tc		tc required for Zone 2

Ignition protection types and CENELEC standards

Comparison: Designation according to IEC (2007) / CENELEC (2009) and EU directive 2014/34/EU (ATEX)

EPL (Equipment Protection Level)				
according to	according	Area		
IEC / CENELEC	to EU directive 2014/34/EU			
Ма	M1	Mining		
Mb	M2			
Ga	1G	explosive gas atmosheres		
Gb	2G			
Gc	3G			
Da	1D	area with combustible dust		
Db	2D			
Dc	3D			

Explosion group

Explosion group I encompasses equipment used for mining (coal dust and methane atmospheres). Explosion group II applies to all other areas (all other gases). For the ignition types "explosion/flame-proof encapsulation" and "intrinsic safety," explosion group II is subdivided into IIA, IIB, and IIC. This subdivision relates to the different levels of ignitability in terms of ignition penetration and electrical sparks. Explosion group IIC covers all gases and vapors. In the future, we will also see explosion group III for flammable dusts, and this in turn will be subdivided in three other groups (IIIA: flammable fibers, IIIB: non-conductive dust, IIIC: conductive dust).

Explosion group	Temperature category (max. permissible surface temperature)					
	T1 (450°C)	T2 (300°C)	T3 (200°C)	T4 (135°C)	T5 (100°C)	T6 (85°C)
Ignition temp.	> 450°C	300-450°C	200-300°C	135-300°C	100–135°C	85–100°C
	> 842°F	572-842°F	392–572°F	275–572°F	212–275°F	185–212°F
1	methane					
IIA	acetone	isoamyl acetate	amyl alcohol	acetaldehyde		
Ignition energy	ammonia	n-butane	benzine			
more than	benzene	n-butanol	diesel fuel			
0.18 mJ	ethyl acetate	1-butene	heating oil			
	methane	propyl acetate	n-hexane			
	methanol	i-propanol				
	propane	vinyl chloride				
	toluene					
IIB	hydrogen	1.3-butadiene	dimethyl ether	diethyl ether		
	cyanide					
Ignition energy	coal gas	1.4-dioxane	ethylglycol			
0.06 to 0.18 mJ		ethylene	hydrogen			
			sulfide			
		ethylene oxide				
IIC	hydrogen	acetylene				carbon
Ignition energy						disulfide
less than 0.06 mJ						

CATEGORIZATION OF GASES AND VAPORS

Temperature category

Electrical equipment in group II is categorized according to the maximum surface temperatures that are allowed to come into contact with explosive atmospheres. The ignition temperature of the gas must be greater than the maximum surface temperature. T6 covers all gases and vapors. For dust explosion protection, the maximum surface temperature is specified in °C, e.g. T130 °C (266 °F).

The last part of the designation, the EC construction type certificate, shows among other things which testing station tested the equipment and when the first time.

EC construction type certification:

Notified body having type-approved equipment

3.6 Laws and regulations in USA, Canada, and Mexico

Laws and regulations in most municipalities, states, and provinces in North America require certain products to be tested to a specific standard or group of standards by a Nationally Recognized Testing Laboratory (NRTL). There are a number of third party approval agencies in the US – UL, FM, ETL and many others. They all provide listings or classifications for explosion protection and provide some performance testing. They do not have any regulatory or legal status. They are primarily a certification to verify the safety of a product for insurance purposes and to minimize liability. Most of the NRTL are also recognized for certifications for Canada.

Underwriters Laboratories Inc. (UL)

is a private third party product safety certification organization. UL develops standards and test procedures for products, materials, components, assemblies, tools and equipment, chiefly dealing with product safety. UL is one of several companies approved for such testing by the U.S. federal agency OSHA (Occupational Safety and Health Administration). OSHA maintains a list of approved NRTL's.

UL develops standards for safety, often based on American National Standards (ANSI) and evaluates many types of products. A typical standard for electronic products includes not only requirements for electrical safety, but also risk of fire and mechanical hazards. UL evaluates products for compliance with specific safety requirements. UL develops its Standards to correlate with the requirements of installation codes, such as the National Electrical Code (NEC).

As one method of protection, UL evaluates instruments for Intrinsic Safety (IS) for use in hazardous areas. The IS rating means that the instrument will not be the source of ignition in a potentially explosive environment. The areas are defined by the type of hazard that may exist (Class), the possibility of a hazard being present in the area (Division) and the specific hazards that may be encountered (Group). UL 913 is the applicable Standard for Safety for Intrinsically Safe Apparatus and Associated Apparatus for Use in Class I, II, and III, Division 1, Hazardous (Classified) Locations.

Hazardous Location:

An area where the possibility of explosion and fire is created by the presence of flammable gases, vapors, dusts, fibers or filings.

Class I	Those areas in which flammable gases or vapors may be present in the air in		
	sufficient quantities to be explosive or ignitable.		
Class II	Those areas made hazardous by the presence of combustible dust.		
Class III	Those areas in which there are easily ignitable fibers or filings present, due to		
	type of material being handled, stored or processed.		

Division 1	In which ignitable concentrations of hazards exists under normal operation		
	conditions and/or where hazard is caused by frequent maintenance or repair		
	work or frequent equipment failure.		
Division 2	2 In which ignitable concentrations of hazards are handled, processed or		
	used, but which are normally in closed containers or closed systems from		
	which they can only escape through accidental rupture or breakdown of		
	such containers or systems.		

Groups

The gases and vapors of Class I locations are broken into four groups by the codes A, B, C and D. These materials are grouped according to the ignition temperature of the substance, its explosion pressure and other flammable characteristics.

Class II – dust locations – groups E, F & G. These groups are classified according to the ignition temperature and the conductivity of the hazardous substance.

The gases and vapors of Class I locations are	Group A	Acetylene
broken into four groups by the codes A, B, C	Group B	Hydrogen
and D. These materials are grouped according	Group C	Ethyl-Ether, Ethylene,
to the ignition temperature of the substance,		Cycle Propane
its explosion pressure and other flammable	Group D	Gasoline, Hexane, Naptha,
characteristics.		Benzene, Butane, Propane,
		Alcohol, Laquer Solvent
		Vapors, Natural Gas
Class II – dust locations – groups E, F & G.	Group E	Metal Dust
These groups are classified according to the	Group F	Carbon Black, Coal,
ignition temperature and the conductivity of the		Coke Dust
hazardous substance.	Group G	Flour, Starch, Grain Dust

Operating Temperature Codes

Maximum Temperature		NEC 500 CSA/UL Codes	IEC, ATEX NEC 505 Codes
Degrees C	Degrees F	Temperature Codes	Temperature
Codes			
450	842	T1	T1
300	572	T2	T2
280	536	T2A	
260	500	T2B	
230	446	T2C	
215	419	T2D	
200	392	T3	ТЗ
180	356	ТЗА	
165	329	T3B	
160	320	T3C	
135	275	T4	T4
120	248	T4A	
100	212	Т5	Т5
85	185	Т6	Т6

These are simplified definitions – refer to National Electrical Code (NEC), Article 500 for complete definitions.

Notes

- 1) T1 through T2D not applicable to Class II location.
- 2) T2A through T2D, Class I Group D only.

A typical UL classification would look like this:

Only as to intrinsic safety for use in hazardous locations

Class I&II, Div.1, Grps A,B,C,D,E,F,G

Safe in atmospheres containing the gases listed in the chart above Use in areas where the hazard could exist at any time

For use in potentially explosive gas or dust atmospheres

As part of a global harmonization effort, the Zone classification system can be used in North America on a voluntary basis (refer to article 505 of the NEC).

NEC 500 CSA/UL Codes	IEC, ATEX NEC 505 Codes
Division 1: Where ignitable concentrations	Zone 0: Where ignitable concentrations of
of flammable gases, vapors or liquids:	flammable gases, vapors or liquids are
 Are likely to exist under normal operating 	present continuously or for long periods of
conditions	time under normal operating conditions.
 Exist frequently because of 	Zone 1: Where ignitable concentrations of
maintenance/repair work or frequent	flammable gases, vapors or liquids:
equipment failure	- Are likely to exist under normal operating
	conditions
	- May exist frequently because of repair,
	maintenance operations or leakage
Division 2: Where ignitable concentrations	Zone 2: Where ignitable concentrations of
of flammable gases, vapors or liquids:	flammable gases, vapors or liquids:
 Are not likely to exist under normal 	- Are not likely to exist under normal
operation conditions	operation conditions
- Are normally in closed containers where	- Occur for only a short period of time
the hazard can only escape through	- Become hazardous only in case of an
accidental rupture or breakdown of such	accident or some unusual operating
containers or in case of abnormal	condition
operation of equipment.	

US Mine Safety Health Administration (MSHA)

In the United States, equipment for use in mines must be approved by the US Mine Safety Health Administration (MSHA). MSHA maintains its own test facilities and has specific standards for electrical equipment being used in mines. MSHA defines and enforces safety regulations for all types of mining operations as legislated by the US Congress. This includes both underground and above ground coal mines, metal/nonmetal mines and large tunneling operations. The MSHA approval process is a legal requirement for use of equipment in a mine. MSHA considers all underground operations as hazardous locations. An MSHA approval reads a bit differently than a UL approval label:

Permissible Gas Monitor

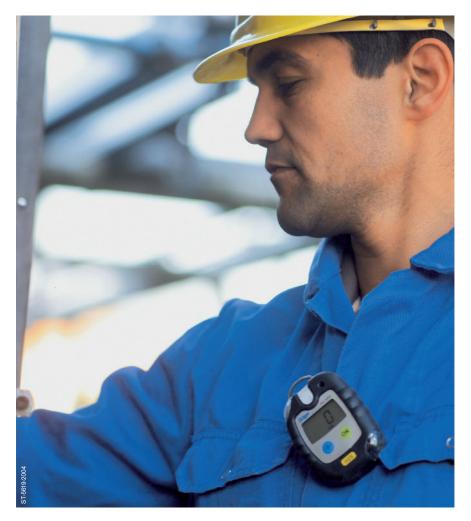
Tested for intrinsic safety in Methane-Air mixtures only

The Canadian Standards Association (CSA)

The Canadian Standards Association (CSA) is a not-for-profit association composed of representatives from government, industry, and consumer groups. They are involved with many diverse areas of specialization such as climate change, business management and safety and performance standards, including those for electrical and electronic equipment, industrial equipment, boilers and pressure vessels, compressed gas handling appliances, environmental protection, and construction materials. CSA also provides advisory services, training materials and print and electronic published standard documents. Currently forty percent of all the standards issued by CSA are referenced in Canadian legislation.

CSA developed the CAN/CSA Z299 series of quality assurance standards still in use today. They are an alternative to the ISO 9000 series of quality standards.

They do all of the review and testing for Intrinsic Safety and conduct performance testing. They propose standards which are often codified into law or become de facto standards in Canada. CSA is a recognized NRTL for testing and safety, not only for Canada but also for the US.


Mexican Safety and Health

Mexican Safety and Health is controlled by the Norma Official Mexicana (NOM) regulations. Nom -005-STPS-1998 is very comparable to 29 CFR 1910.1200, the basic OSHA regulation in the US. While using US OSHA regulations as a basis, the Mexican government has implemented local requirements. They accept the testing and standards of any of the Nationally Recognized Testing Labs.

HAZARDOUS LOCATIONS CLASSIFICATIONS

Classification Material Presence	IEC, ATEX NEC 505 Codes	NEC 500 CSA/UL Codes
Gas & Vapors		
Acetylene	Group IIC	Class I/
		Group A
Hydrogen	Group IIB	Class I/
		Group B
Ethylene	Group IIB	Class I/
		Group C
Propane	Group IIA	Class I/
		Group D
Methane	Group I	Class I/
		Group D
Dust		
Metal	N/A	Class II/
		Group E
Coal	N/A	Class II/
		Group F
Grain	N/A	Class II/
		Group G
Fibers (All)	N/A	Class III

3.7 Single-gas measuring instruments

If the danger of toxic gases or vapors can be narrowed down to a single gas or condustive component, then single-gas measuring and warning devices are the ideal solution for personal monitoring in the workplace. They are small, robust, and ergonomic. These devices are usually attached to the work clothing near the breathing area, but do not limit the movement of workers. They monitor the ambient air continuously and produce an alarm (visual, acoustic, and by vibration) if the gas concentration exceeds an alarm limit preset in the device. This enables employees to respond immediately to dangers if accidents occur during normal operation, or if unforeseen events occur during maintenance and repair work.

Dräger Pac 3500–7000

The Pac 3500-7000 family is equipped with XXS sensors. These miniaturized electrochemical sensors enable a small, ergonomic instrument design. The sensor sits right behind a replaceable dust and water filter which protects it from outside influences, and yet has a negligible effect on response times. Like accuracy and reliability, response time is a crucial factor. The t_{90} to t_{20} times provide information about how quickly the sensor responds to changes in gas concentration. Their fast response times and very small diffusion paths enable these sensors to react extremely quickly, immediately indicating any danger that arises. The electrical signal produced by the sensor is converted into a concentration reading on the display by the unit's electronics and software. Alarm thresholds are stored in the unit (A1 = pre-alarm/A2 = main alarm). If gas concentrations exceed these alarm thresholds, then the unit produces an acoustic, visual, and vibration alarm. Durability and explosion protection are two other important factors when choosing the right gas detection device.

Dräger X-am 5100

The Dräger X-am 5100 is designed for the measurement of the gases / vapors hydrazine, hydrogen peroxide, hydrogen chloride and hydrogen fluoride. These special gas hazards are difficult to detect because they adsorb to different surfaces. The open gas inlet projecting from the device prevents that adsorbing surfaces are between the gas and the gas sensor. A rapid response of the proven XS sensors is thus also ensured for these special gases.

Dräger Pac 3500/5500/7000

Small and robust, economical and powerful. The compact Dräger Pac family is equipped with the latest sensor technology and a multitude of features, and is tailor-made for the diverse demands of industry.

OTHER BENEFITS

 Robust: water- and dust-protection compliant with IP 68

 Ideal solution for functional testing and adjustment

 Flexible alarm and warning features

 Long sensor and device life time at Dräger Pac 5500 and 7000

 Reliable gas entry from both sides

Personal monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring	Robust, IP 68
	Reliable gas inlets from both sides
	Response time of 10 seconds

The impact-resistant housing is covered with protective rubber, which makes it resistant to corrosive chemicals. A strong, rotating crocodile clip made from stainless steel allows the unit to be fixed securely to clothing or belt.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	84 × 64 × 25 mm; 3.3 x 2.5 x 1.0 in.
Weight	120 g; 3.8 oz.
Ambient conditions:	
Temperature	-30 to +50°C; -20 to +120°F
Pressure	700 to 1,300 hPa
Humidity	10 to 90% r.h.
Ingress protection	IP 68
Alarms:	
Visual	360°
Acoustic	Multi-tone alarm > 90 dB in 30 cm (1 ft.)
Vibration	yes
Power supply	Replaceable lithium battery

Dräger Pac 3500/5500/7000

FEATURES COMPARISON

FEATURES COMPARISON			
	Dräger Pac 3500	Dräger Pac 5500	Dräger Pac 7000
Compatible sensors:			
XXS EC sensors	O ₂ , CO, H ₂ S-LC	O ₂ , CO, H ₂ S-LC	O ₂ , CO, CO-LC, H ₂ S-LC,
			CO ₂ , CI ₂ , HCN, HCN
			PC, NH ₃ , NO, NO ₂ , PH ₃ ,
			$\frac{SO_2, H_2S, OV; OV-A}{H_2S, OV; OV-A}$
Operation time	2 years	Unlimited	Unlimited
Data logger:	Events saved with	Events saved with	Concentrations and
	date and time (up to	date and time (up to	events saved together
	60 events)	60 events)	with date and time (up
			to 120 hours at 1 data
		01 (1 0	set per minute).
Battery life CO, H ₂ S	8 hours/day, 2 years	8 hours/day, 2 years	24 hours/day
	(1 minute alarm per day)	(1 minute alarm per day)	> 5,500 hours
			(1 minute alarm per day)
Battery life O ₂	8 hours/day, 1 year	8 hours/day, 1 year	24 hours/day
	(1 minute alarm per day)	(1 minute alarm per day)	> 2,700 hours
			(1 minute alarm per day)
Bump test	Pushing the OK-	Pushing the OK-	Automatic
	button 3 times	button 3 times	
Approvals:			
ATEX	ATEX I M1 / II 1G	ATEX I M1 / II 1G	ATEX I M1 / II 1G
	Ex ia I/IIC T4	Ex ia I/IIC T4	Ex ia I/IIC T4
Measurement performance	-	-	XXS EC Sensoren:
certificate			O_2 , H ₂ S, CO
UL	Class I, II Div. 1	Class I, II Div. 1	Class I, II Div. 1 Group
	Group A, B, C, D, E,	Group A, B, C, D, E,	A, B, C, D, E, F, G
	F, G Temp. Code T4	F, G Temp. Code T4	Temp. Code T4
CSA	Class I, II Div. 1	Class I, II Div. 1	Class I, II Div. 1
	Gruppe A, B, C, D, E,	Gruppe A, B, C, D, E,	Gruppe A, B, C, D, E,
	F, G TempCode T4	F, G TempCode T4	F, G TempCode T4
IECEx	Ex ia II CT4	Ex ia II CT4	Ex ia II CT4
GOST/ EAC	PO Ex ia I X	PO Ex ia I X	PO Ex ia I X
	0 Ex ia IIC T4 X	0 Ex ia IIC T4 X	0 Ex ia IIC T4 X
RUS – Pattern Approval	XXS EC sensors:	XXS EC sensors:	XXS EC sensors: O ₂ ,
Certificate of measuring	O ₂ , H ₂ S, CO	O ₂ , H ₂ S, CO	H ₂ S, CO, CO LC, H ₂ S
instruments			LC, Cl_2 , CO_2 , HCN,
			HCN PC, PH_3 , NH_3 ,
			NO ₂ , SO ₂ , OV, OV-A
MED		-	96/98/EC
CE mark	Electromagnetic	Electromagnetic	Electromagnetic
	compatibility (Direc-	compatibility (Direc-	compatibility (Directive
	tive 2004/108/EC)	tive 2004/180/EC)	2004/108/EC)

ACCESSORIES

Calibration accessories

Dräger Bump Test Station Dräger X-dock Communication accessories: Dräger CC-Vision Basic, free of charge in the internet www.draeger.com

Dräger Bump Test Station

Dräger X-dock Pac 5300

Communication cradle

Dräger X-am 5100

The Dräger X-am 5100 is designed for the measurement of the gases / vapors hydrazine, hydrogen peroxide, hydrogen chloride and hydrogen fluoride. These special gas hazards are difficult to detect because they adsorb to different surfaces. The open gas inlet projecting from the device prevents that adsorbing surfaces are between the gas and the gas sensor. A rapid response of the proven XS sensors is thus also ensured for these special gases. Dräger X-am 5100 can only be operated in diffusion mode.

OTHER BENEFITS

Usage in industrial area - Ex approved

Measurement performance of the sensors are independent of the device

Personal monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring

small and light rapid respond time of the Dräger XS Sensors Battery life > 200 hours

TECHNICAL SPECIFICATIONS

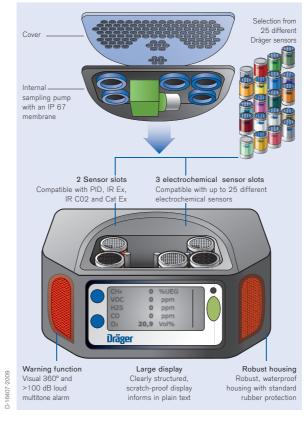
Dimensions (W × H × D)	47 x 129 x 55 mm; 1.85 x 5.08 x 2.17 in.	
Weight	ca. 220 g; 7 oz.	
Ambient conditions:		
Temperature	-20 to +50; -4 to +120°F	
Pressure	700 to 1300	
Humidity	10 to 95 % r.H.	
Ingress protection	IP 54	
Alarms:		
Visual	180°	
Acoustic	Multi-tone alarm > 90 dB in 30 cm (1 ft.)	
Vibration	yes	
Power supply	Alkaline, rechargeable NiMH for Alkaline Pack, T4	
	Akku Pack	
Battery life (h)	> 200	
Charging time (h)	< 4	
Compatible sensors	XS Sensors XS H ₂ O ₂ , XS Hydrazine, XS HF/HCL	
Operation time	unlimited	
Data logger	can be read out via IR > 1000 h at a recording	
	interval of 1 value per minute	
Approvals:		
ATEX	I M1 Ex ia I Ma	
	II 1G Ex ia IIC T4/T3 Ga	
IECEx	Ex ia I Ma	
	Ex ia IIC T4/T3 Ga	
c CSA us	Class I, Div. 1, Groups A,B,C,D TC T4/T3	
	Class I, Zone 0, A/Ex ia IIC T4/T3 /Ga	
EAC Ex	PO Ex ia I X	
	O Ex ia IIC T4/T3 X	
CE mark	Electromagnetic compatibility	
	(Directive 2004/108/EC)	

ACCESSORIES	
General accessories	Charging module
	Car charging connection cable 12V/24V
Calibration accessories	Communication accessories: Dräger CC-Vision
	Calibration adapter

USB DIRA with USB cable Charging accessories



Car charging connecting cable


Dräger X-zone with Dräger X-am 5100 holder

3.8 Multi-gas measuring instruments

If hazardous substances (Ex-Ox-Tox) occur in the work place, then it is advisable to use continuous multi-gas measuring instruments. These enable different measuring approaches be used (infrared, catalytic bead, PID, and electrochemical sensors) in one device, thus drawing on the strengths of the measurement principles.

The constellation of the sensors depends on the application. Up to 6 gases can be detected in real-time and continuously. As well as being used for personal monitoring and area monitoring, multi-gas measuring instruments can also be used for clearance monitorings and leak detection with the help of optional accessories. Multi-gas measuring instruments include the Dräger X-am 2500, X-am 5000, X-am 5600, and X-am 7000.

Gas measurement technology (example: Dräger X-am 7000)

Dräger X-am 2500/5000/5600

D-27784-2009

OTHER BENEFITS

Robust: water and dust protection compliant with IP 67

Reliable gas inlets from both sides

Precise, vapor-sensitive Ex monitoring

Ideal solution for functional testing and calibration

(automatic testing and calibration station - Dräger X-dock & Dräger Bump Test Station)

Dräger offers a complete product series for the simultaneous measurement of different gases. The Dräger X-am 2500/5000/5600 family is a new generation of gas detection equipment.

Its practical design, cell-phone size, low weight,

and the long-life of the electrochemical XXS sensors make this family the perfect companion for personal monitoring. Combined with an optional external pump and hose or probe, they are perfect for confined space entry measurements. The Dräger X-zone 5500 extends the application of these instruments

to innovative area monitoring instruments with various application possibilities (does not apply

Personal monitoring

Confined space entry

to X-am 2500).

Leak detection

Area Monitoring

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Personal monitoring	Durable, IP 67	
Confined space entry	High level of flexibility using external pump (with 20	
	m or 66 ft. tube), adaptable to various probes	
Leak detection	Catalytic sensors and XXS sensors respond quickly	
Area Monitoring	Wireless fenceline, available for use in Zone 0	

An optional external pump, which can be operated using a hose of up to 20 meters (66 ft.) long, is an ideal solution for applications involving the confined space entry measurements in tanks, pipelines, etc. When the instrument is placed in the cradle, the pump automatically starts.

The daily bump test of the instruments is easier and more comfortable than ever before: With the Dräger Bump Test Station no power is necessary and the instruments can be tested fast and easily.

The Dräger X-dock offers complete comfort, easy operation and central documentation and all with reduced gas consumption. Thus, Dräger's test stations support safety on the highest level and this is time and cost-effectively.

TECHNICAL SPECIFICATIONS

47 × 129 × 31 mm; 1.8 x 5.1 x 1.2 in.	
220 g; 8.8 oz.	
-20 to +50°C; -4 to +122°F	
700 to 1,300 hPa	
10 to 95% r.h.	
IP 67	
180°	
Multi-tone > 90 dB in 30 cm (1 ft.)	
yes	
Alkaline, rechargeable NiMH for alkaline pack,	
T4 rechargeable battery pack	
approx. 10	
< 4	
Maximum hose length 20 m; 66 ft.	

Dräger X-am 2500/5000/5600

FEATURES COMPARISON

Compatible sensors	Dräger X-am 2500	Dräger X-am 5000	Dräger X-am 5600
	Flexible 1 - 4 sensors. One catalytic sensor and XXS EC sensors (see XXS EC sensors)	Flexible from 1 to 4 sensors. One catalytic sensor and 3 XXS EC sensors (see XXS EC sensors)	Flexible from 1 to 4 sensors One IR sensor and 3 XXS EC sensors (see XXS EC sensors)
XXS EC sensors	O ₂ , CO, H ₂ S, SO ₂ and NO ₂	Amine, O ₂ , CO, CO LC, COCL ₂ , CO HC, H ₂ S, H ₂ S LC, H ₂ S HC, HCN PC, CO ₂ , Cl ₂ , HCN, NH ₃ , NO, NO ₂ , NO ₂ LC, PH ₃ , PH ₃ HC, SO ₂ , OV, OV-A, H ₂ S/CO, CO H ₂ (compensated), H ₂ , H ₂ HC, Odorant, O ₃	Amine, O ₂ , CO, CO LC, COCL ₂ , CO HC, H ₂ S, H ₂ S LC, H ₂ S HC, CO ₂ , Cl ₂ , HCN, HCN PC, NH ₃ , NO, NO ₂ , NO ₂ LC, PH ₃ , PH ₃ HC, SO ₂ , OV, OV-A, H ₂ S/CO, CO H ₂ (compensated), H ₂ , H ₂ HC, Odorant, O ₃
Catalytic sensors		0. 1000/ 1.51	
Cat Ex 125 PR	0–100% LEL 0–5 Vol% CH₄	0–100% LEL 0–100 Vol% CH ₄ Special calibration for organic vapors is possible	
Cat Ex 125 PR-Gas	0–100% LEL 0–100 Vol% CH4	0–100% LEL 0–100 Vol% CH ₄	
Infrared sensors		· · · · · · · · · · · · · · · · · · ·	0-100% LEL
IR Ex	-		0–100 Vol% CH ₄ / C ₄ H ₁₀ / C ₂ H ₄ / LPG
IR CO ₂ IR CO ₂ /Ex	-		0-5 Vol% CO ₂ 0-100% LEL 0-100 Vol% CH ₄ / C ₄ H ₁₀ / C ₂ H ₄ / LPG 0-5 Vol% CO ₂
Data logger	Can be read out via Infrared > 1000 hours with 4 gases and a recording interval of 1 value per minute	Can be read out via Infrared > 1000 hours with 5 gases and a recording interval of 1 value per minute	Can be read out via Infrared > 1000 hours with 6 gases and a recording interval of 1 value per minute
Approvals:			
ATEX	I M1/II 2G Ex ia d IIC T4/T3 I M2 EEx ia d I	I M1/II 1G Ex ia I/IIC T3 I M2/II 2G Ex d ia I/IIC T4/T3	l M1/II 1G Ex ia I/IIC T4/T3
Measurement performance certificate	for O ₂ according to EN 50104/CO and H ₂ S according to EN 45544/Methane to No- nane according to EN 60079 and EN 50271	for O ₂ according to EN 50104/CO and H ₂ S according to EN 45544/Methane to No- nane according to EN 60079 and EN 50271	50104/CO and H ₂ S according to EN 45544/Methane to No- nane according to EN 60079 and EN 50271
c CSA us	Div.1, Class I, Groups A,B,C,D T4/T3 A/Ex ia IIC T3 /Ga A/Ex d ia IIC T4/T3 /Gb Canada: Ex ia IIC T3 Ex d ia IIC T4/T3 USA: AEx ia IIC T3 Ga AEx d ia IIC T4/T3 Gb	Div.1, Class I, Groups A,B,C,D T4/T3 A/Ex ia IIC T3 /Ga A/Ex di a IIC T4/T3 /Gb Canada: Ex ia IIC T3 Ex d ia IIC T4/T3 USA: AEx ia IIC T3 Ga AEx d ia IIC T4/T3 Gb	Div.1, Class I, Groups A,B,C,D T4/T3 A/Ex ia IIC T4/T3 /Ga Canada: Ex ia IIC T4/T3 USA: AEx ia IIC T4/T3 Ga

FEATURES COMPARISON

	Dräger X-am 2500	Dräger X-am 5000	Dräger X-am 5600
IECEx	Ex ia I Ex ia IIC T3	Ex ia I Ma Ex ia IIC T3 Da	Ex ia I Ma Ex ia IIC T4/T3 Ga
	Ex d ia l	Ex d ia I Mb	LX 1a 110 14/15 Ga
	Ex d ia IIC T4/T3	Ex d ia IIC T4/T3 Db	
CE mark	Electromagnetic	Electromagnetic	Electromagnetic
	compatibility (Directive	compatibility (Directive	compatibility (Directive
	2004/108/EC) ATEX	2004/108/EC) ATEX	2004/108/EC) ATEX
	(Directive 2014/34/EU)	(Directive 2014/34/EU)	(Directive
MED	MED 96/98/EG	MED 96/98/EG	2014/34/EU)
MSHA	according the	according the	MED 96/98/EG
	requirement "Title 30	requirement "Title 30	-
	Code of Federal Regu-	Code of Federal Regu-	
	lations, Part 22 for use	lations, Part 22 for use	
	in gassy underground	in gassy underground	
	mines"	mines"	
EAC Ex	PO Ex ia I X / 0 Ex ia IIC	PO Ex ia I X / 0 Ex ia IIC	
	T3 X or PB Ex d ia I X/	T3 X or PB Ex d ia I X/ 1	PO Ex ia 1X / 0 Ex ia
	1 Ex d ia IIC T4/T3 X	Ex d ia IIC T4/T3 X	IIC T4/T3 X

ACCESSORIES

General accessories	Charging module	
	Car charging connection cable 12V/24V	
Calibration accessories	Dräger Bump Test Station	
	Dräger X-dock	
	Dräger CC-Vision	
	Basic, free of charge on www.draeger.com	
	Nonane tester (for function tests)	
Pump accessories	Dräger X-am 1/2/5000 external pump	
	Hoses of various lengths	
	Probes	
Area Monitoring	Dräger X-zone 5500 (for Dräger X-am 5000/5100/5600)	

Dräger Bump Test Station

Dräger X-zone 55500

Dräger X-dock 5300 Dräger X-am 125

Dräger X-zone Com

External pump

ST-9476-2007

Nonane tester

Dräger X-Zone 5500

State-of-the-art area monitoring – in combination with the gas detectors Dräger X-am 5000, 5100 and 5600 the Dräger X-zone 5500 is suitable for the measurement of one to six gases. The easy transportable, robust and waterproof X-zone expands the mobile gas detection to a unique system with various different application possibilities.

OTHER BENEFITS

IP 67 and Zone 0 approval for industrial applications

Wireless communication of X-zone's for frequencie: 868 MHz, 915 MHz, 433 Mhz and 430 MHz

Robust and trouble-free connection up to 100m between two X-zone

Robust and simple to be used induction wireless charging technology available

PowerOff-function: via the potential-free alarm contact external equipment can be switched off during an alarm occur.

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Area Monitoring	Up to 25 Dräger X-zone 5500 can be automatically
	interconnected to form a wireless fenceline. This
	allows a continuous monitoring of larger areas, e.g.
	pipelines or industrial tanks during industrial shut
	downs, up to 120 hours.
Confined space entry	An optional intergrated pump allows the continuous
	monitoring of confined space entry or locations
	which are difficult to access, for a distance of up
	to 45 m.

The Dräger X-zone 5500 transforms the Dräger personal gas detection instruments Dräger X-am 5100/5000/5600 into innovative area monitoring devices for a wide range of application. This gas measurement system is patented. With the flexible sensor equipping of the Dräger X-am 5000 and X-am 5600 the fields of application of the Dräger X-zone 5500 are manifold. Just insert a different Dräger X-am 5000 or X-am 5600, which are equipped with other sensors, and the Dräger X-zone 5500 can be used for a different application. With the 360° alarm amplifier, the acoustic warning is heard with the same volume from all sides. X-zone 5500 affords a new portable safety concept. Up to 25 Dräger X-zones can be automatically interconnected to form a wireless fenceline. In the event of a gas alarm, the device transmits the alarm signal to all units that are part of the fenceline which then signal a daughter alarm. The daughter alarm is, in contrast to the red master alarm, displayed geen/red by the illuminated LED ring, thus allowing and providing for a fast and easy recognitions of the alarm itself as well as of the alarm-trigging devices. This ensures an easy and clear evacuation alarm and alerting. Via the potential-free alarm contact, the Dräger X-zone 5500 device can also interconnect and operate external equipment such as alarm horns, lamps or traffic lights. Furthermore, the signal of the alarm chain including the maximum gas concentrations can be transferred to the control room or mobile terminals via Modbus interface and communication modules like the X-zone Com. Dräger X-zone 5500 as an area monitoring devices often stay located well within an explosion hazard area, even during a gas alarm. It is therefore all the more important the devices are approved for use in explosion hazard areas, zone O. The modern induction charger, is simple to use, comfortable and has no issues with dirty charging contacts, so it is maintenance friendly.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	480 x 300 x 300 mm; 19 x 12 x 12 in
Weight	10 kg; 353 oz. (24 Ah battery)
Ambient conditions:	
Temperature	-20 to +50; -4 to +122°F
Pressure	700 to 1,300 hPa
Humidity	10 to 95 % r.h.
Ingress protection	IP 67
Alarms:	
Visual	360° LED (illuminated ring)
Acoustic	multi-tone: > 108 in 1m (3.3 ft.)
	> 120 in 30 cm (1 ft.)

Alarm output	Potential-free alarm contact for intrinsically safe
	circuits (6 pole); < 20 V to 0.25 A (0.15 A
	constant current); resistive load
Radio transmission	Worldwide licencse-free ISM frequencies
	Digital radio, robust and interference-free transmis-
	sion up to 100 m.
RF approval	868 MHz (EU, Norway, Switzerland, Turkey,
	South Africa, Singapore)
	915 MHz (USA, Canada, India, Australia, Japan)
	433 MHz (Russia)
Power supply	Pb-Akku
Operation period	Up to 120 h with a fully equipped
	Dräger X-am 5000/5600, up to 400 h with
	tox sensors and 30 minutes alarm per day
Charging period	< 10 h, flexilbe power supply; External 100 - 240V
	charger (worldwide) or inductive wireless charging
Pump mode	internal pump / hose length: max 45 m
Approval	
ATEX	I M1 Ex ia I Ma
	II 1G Ex ia IIC T3 Ga
	II 2G Ex ia d IIC T4 Gb
c CSA us	Class I, Zone 0, AEx ia IIC T3 Ga
	Class I, Zone 1, AEx ia d IIC T4 Gb
IECEx	Ex ia I Ma
	Ex ia IIC T3 Ga
	Ex ia d IIC T4 Gb
CE-mark	Electromagnetic compatibility
	(Directive 2004/108/EC) /
	R&TTE (Directive 99/005/EG)
	ATEX (Directive 2014/34/EU)

ACCESSORIES

General accessories	Inductive charger
	Plug-in charger
	Pb-battery (24 Ah)
	Socket, 30 cm high; for measurement of light gases
	Alarm damper, for use within bump tests
	X-zone Com, Holder X-am 5100,
	X-zone Switch Off Box, X-zone Switch On Box
Calibration accessories	Bump Test adapter for function tests
	Cover plate with diffusion adapter
	Communication accessories:
	Dräger CC-Vision Basic,
	free of charge on www.draeger.com
	USB DIRA with USB cable
Pump accessories	cover plate with pump adapter
	different measuring probe
	extension hose, different lenght

D-23627-2009

Cover plate

D-23634-2009

Inductive charger Allowing easy charging

Calibration and communication accessory USB DIRA with USB cable

D-52751-2012

RVP 5000

X-zone Com®

Socket For measurements of light gases

Alarm damper For use within bump tests

With diffusion adapter

X-zone Switch Off Switching station

Set holder Dräger X-am 5100

X-zone Switch On Switching station

Dräger X-am 7000

ST-7054-2005

Multi-purpose: the Dräger X-am 7000 is the innovative solution for the simultaneous and continuous measurement of up to five gases. A combination of more than 25 sensors allows flexible solutions to individual monitoring tasks. The X-am 7000 can be equipped with three electrochemical and two infrared, catalytic bead sensors or photo ionization sensors. It is the ideal companion in a variety of applications where the reliable detection of oxygen, toxic and combustible gases and vapors is necessary.

OTHER BENEFITS

Integrated water- and dust-filter, and immersion-proof, as defined in IP 67
Clearly structured, scratch-resistant display
Very loud acoustic multi-tone alarm and 360° all-round visual alarm
Intelligent charge management
Intuitive software functions

Area monitoring

Confined space entry

Leak detection

ESPECIALLY SUITED FOR THE FOLLOWING APPLICATIONS

Area monitoring	Durable, IP 67
Confined space entry	Built-in high-performance pump makes it possible to
	sample gas using a hose up to 45 m/150 ft. long.
Leak detection	Extensive portfolio of over 25 different
	DrägerSensors enables the detection of more than
	100 gases and vapors.

Smart CatEx PR sensors enable the detection of flammable gases and vapors, and can be calibrated to as many as five different sensitivity levels. The unit can be switched automatically from % LEL to 100 Vol.-% in full-range mode. Leakages are reliably detected, visually in bar-graph mode and audibly in tracking mode.

The PID sensor detects organic vapors in very low concentrations. An integrated library of 20 substances, three user-adaptable channels, and an easy switch to leak detection mode makes the instrument flexible enough to met your specific needs.

With the help of Dräger CC-Vision Basic software, up to 5 different detection applications can be saved within the instrument. By doing so, the use of different instrument configurations can be set for that specific application. During operation, a simple change between these set parameters can be done via the instrument's menu.

In addition to the electrochemical sensors, the catalytic and infrared sensors are automatically recognized by the instrument upon insertion. All sensors are pre-calibrated, and therefore a reconfiguration of the Dräger X-am 7000 can be done by simply changing the sensor. No additional service or maintenance is necessary.

TECHNICAL SPECIFICATIONS

Dimensions (W × H × D)	150 × 140 × 75 mm; 5.9 x 5.6 x 3 in.
Weight	600 g; 21 oz. (basic unit)
	490 g; 17 oz. (rechargeable battery 3.0 Ah)
	730 g; 26 oz. (rechargeable battery 6.0 Ah)
Ambient conditions:	
Temperature	–20 to +55 °C, short-term, –40 to +60 °C,
	–5 to + 130 °F, short-term –40 to +140 °F
Pressure	700 to 1,300 hPa
Humidity	10 to 95% r.h.
Ingress protection	IP 67
Alarms:	
Visual	360°
Acoustic	Multi-tone > 100 dB in 30 cm (1 ft.)
Vibration	no
Power supply	Alkaline, rechargeable NiMH
Battery life (h)	Alkaline: > 20
-	NiMH: > 9 (4.8 V/3.0 Ah)
	> 20 (4.8 V/6.0 Ah)
	(complete with all sensors and 20 % of the time in
	pumped mode)
Charging time (h)	3.5 to 7, dependent on battery type
Data logger	100 h
Pump mode	Maximum hose length of 45 m (150 ft.)
Approvals:	
ATEX	II 2G Ex d ia IIC T4 Gb; -20 ≤ Ta ≤ + 60 °C
	I M2 Ex d ia I Mb
Measurement performance certificate	for Methane, Propane and Nonane according to
	EN 60079-29-1
UL	Class I Div. 1 Group A, B, C, D, Temp. Code T4
	–20 ≤ Ta ≤ + 60 °C (NiMH);
	-20 ≤ Ta ≤ +40 °C (Alkaline)
CSA	Class I Div. 1 Group A, B, C, D, Temp. Code T4
	–20 ≤ Ta ≤ + 60 °C (NiMH);
	-20 ≤ Ta ≤ +40 °C (Alkaline)
IECEx	Ex d ia I/IIC T4; -20 ≤ Ta ≤ + 60 °C
MED	MED 96/98/EC
CE mark	Electromagnetic compatibility
	(Directive 2004/108/EC)

ACCESSORIES

General accessories	Charging module
	Power supply for charging module
	Power supply for vehicles
	Car mounting kit
Calibration accessories	Dräger Bump Test Station
	Dräger E-Cal
	Communication accessories:
	Dräger CC-Vision Basic/Gas-Vision,
	free of charge on www.draeger.com
	Printer Set for Dräger Bump Test Station
Pump accessories	Pump adapter
	Pump membrane set
	Probes
	Hoses

Dräger Bump Test Station Dräger E-Cal

Pump adapter

Charging module

4 Introduction to sensor technology

The heart of every measuring instrument is its sensor. The sensor is crucial in determining the quality of measurements, and therefore it has a fundamental influence on the safety of the user. The development and production of sensors is part of Dräger's core competence.

4.1 Selecting the proper measurement method

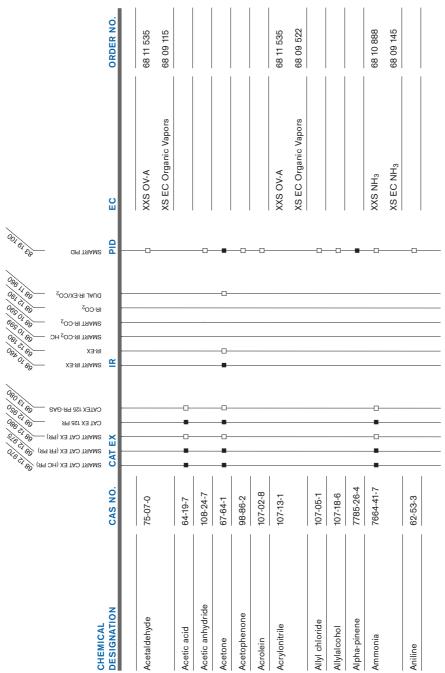
Selecting the correct measuring principle is essential when detecting dangerous gases. Every measuring principle has its own strengths and limits, and each is better for particular groups of gases (flammable/toxic gases and oxygen). For this reason, it is important to ask which gases/vapors occur in the workplace Generally speaking, we differentiate between the following gas risks:

Risk of explosion

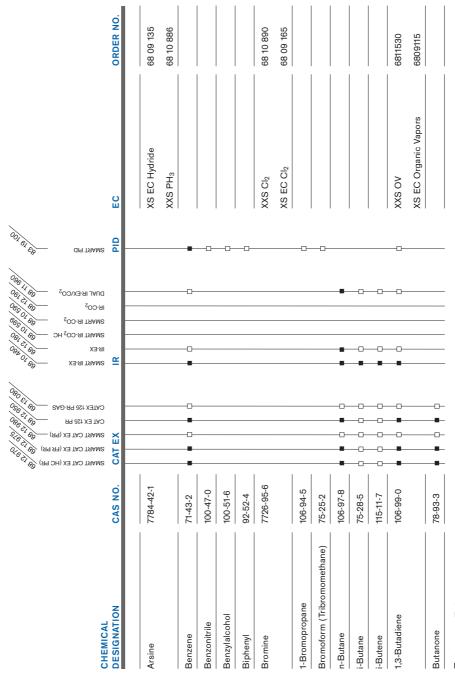
- Wherever flammable gases and vapors occur, there is an increased risk of explosion. Typical areas for this include mining, refineries, the chemical industry, and many others. Infrared and catalytic bead sensors are used to detect this type of risk. These sensors usually detect gas concentrations in the LEL (lower explosure level) range, but some of them can also be used for the 100 Vol.-% range.

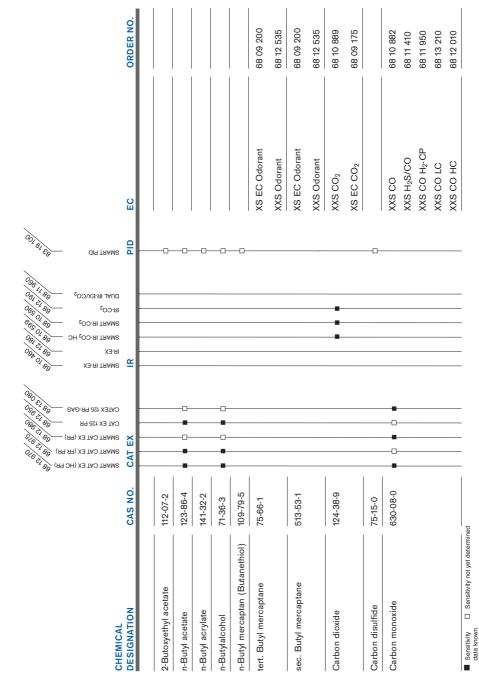
Lack or excess of oxygen

- A lack of oxygen is life-threatening. An excess of oxygen can affect the flammability of materials and can even cause auto-ignition. Electrochemical sensors are used to measure oxygen. Their measuring range is from between 0 and 25 Vol.-% all the way up to 100 Vol.-%.

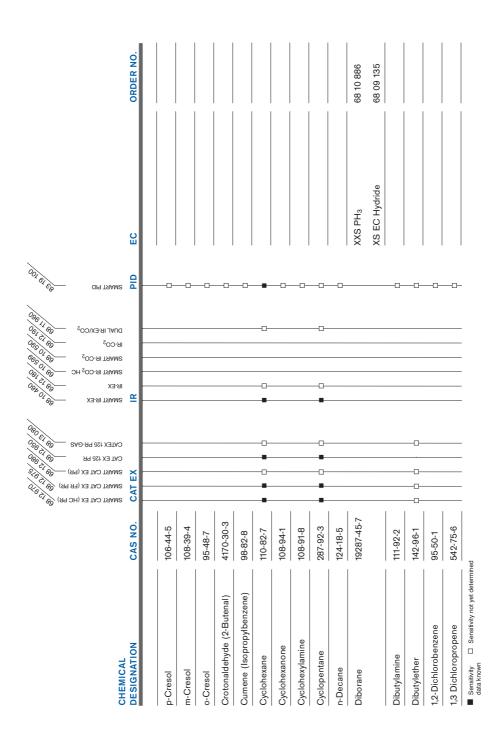

Toxicity

- Poisonous substances can occur anywhere - in industrial production and processing, in transport (rail, road, ship), in the case of incomplete combustion (CO), and also as a result of completely naturally processes such as rotting and decomposition of biomass. Electrochemical and PID sensors are used to detect toxic gases.

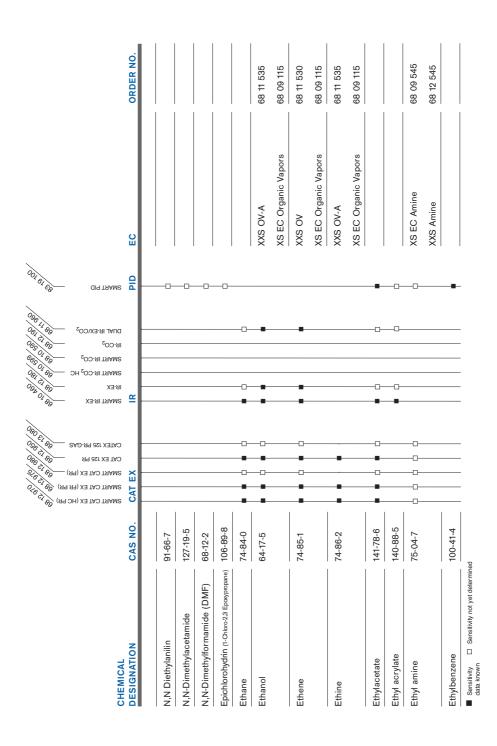

The decision about which sensor type is the right one for a particular application also depends on other factors such as:

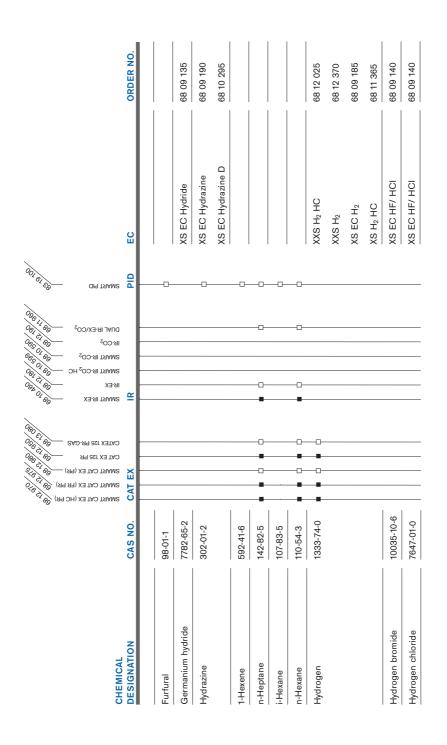

- What other hazardous material are present (cross-sensitivity)?
- Is it necessary to measure hazardous material selectively, or is it more sensible to measure a complete parameter?

4.2 Overview of detectable vapors and gases

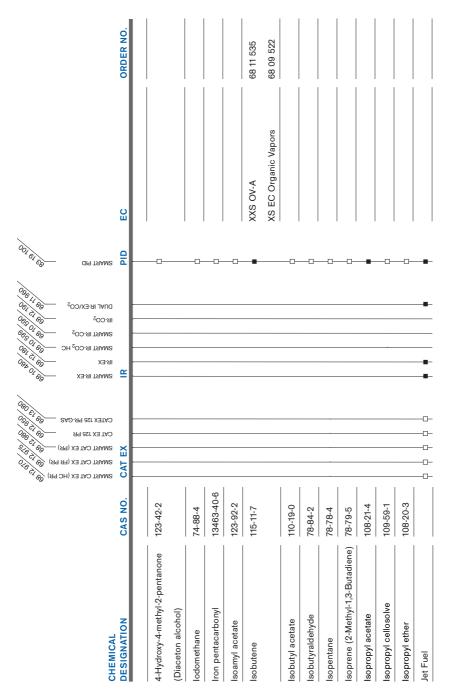


Sensitivity data known




	CHEMICAL		SMART CAT EX (HC PR) SMART CAT EX (HP PR) SMART CAT EX (FR PR) SMART CAT EX (FR PR) SMART CAT EX (FR PR) CAT EX 135 PR CAS CAT EX 135	DINFLIFEXCO ² BINFLIFEXCO ² SMARTIRCO ² SMARTIRCO ² HC	ool et		
le	DESIGNATION	CAS NO.	CAT EX	R	G	EC	ORDER NO.
7782-50-5 7782-50-5 poxypropane 106-89-8 10 106-47-8 10 10049-04-4 78-95-5 108-90-7	Carbon monoxide					XXS E CO	68 12 212
poxypropane 106-89-8 106-89-8 106-89-8 106-89-8 106-89-8 106-89-8 106-89-8 106-89-8 100-47-8						XS EC CO	68 09 105
7782-50-5 7782-50-5 poxypropane 106-89-8 10 106-47-8 10049-04-4 10049-04-4 78-95-5 108-90-7						XS EC CO HC	68 09 120
poxypropane 7782-50-5 poxypropane 106-89-8 poxypropane 106-47-8 10 10049-04-4 78-95-5 100490-7						XS 2 CO	68 10 365
7782-50-5 poxypropane 106-89-8)) 106-47-8 10049-04-4 78-95-5 108-90-7						XS R CO	68 10 258
poxypropane 106-89-8 106-89-8 106-89-8 106-89-8 106-47-8 106-47-8 100-49-04-4 106-47-8 100-49-04-4 106-47-8 100-47-8 100	Chlorine	7782-50-5				XXS CI ₂	68 10 890
poxypropane 106-89-8						XS EC Cl ₂	68 09 165
) 106-47-8 10049-04-4 78-95-5 108-90-7	1-Chlorine-2,3 epoxypropane	106-89-8			-0-	XXS OV	68 11 530
10049-04-4 78-95-5 108-90-7	(Epichlorohydrin)					XS EC Organic Vapors - A	68 09 522
10049-04-4 0 78-95-5 108-90-7		106-47-8			-0-		
	Chlorine dioxide	10049-04-4				XS EC Cl ₂	68 09 165
78.95.5						XXS EC CI2	68 10 890
78-95-5						XS EC CIO2	68 11 360
	Chloroacetone	78-95-5			-0-		
	Chlorobenzene	108-90-7					

ORDER NO.			68 09 545	68 12 545	68 11 535	68 09 115		68 09 545	68 12 545		68 12 535		68 09 190	68 10 295	68 09 200	68 12 535
Ë			XS EC Amine	XXS Amine	A-VO XXS	XS EC Organic Vapors		XS EC Amine	XXS Amine		XXS Odorant		XS EC Hydrazine	XS EC Hydrazine D	XS EC Odorant	XXS Odorant
dig trame and trame and trame and transferred		•			-0-		-0-	-0-		-0-	-0-	-0-			-0-	
ПИР IREX 68 0 В 0 0 В 0 В												-0-				
Самеят сатех (не ред. Самеят самеят Самеят самеят Самеят самеят Са			0- 8- 8-		-0-						 	0- 0- 0-				
CAS NO.	156-60-5		109-89-7		60-29-7		75-38-7	124-40-3		123-91-1	624-92-0	115-10-6	540-73-8		75-18-3	
CHEMICAL DESIGNATION	1,2-Dichloroethylene (trans)	Diesel fuel	Diethylamine		Diethylether		1,1-Difluorethylene	Dimethylamine		1,4-Dioxane	Dimethyldisulfide	Dimethyl ether	Dimethyl hydrazine		Dimethylsulfide	

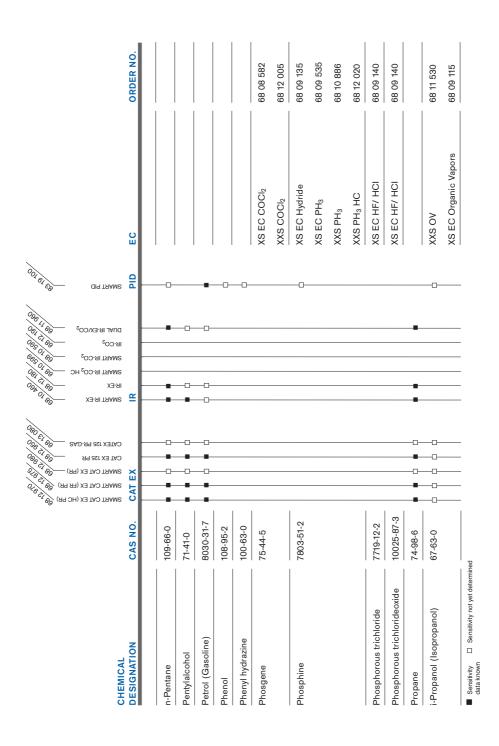


ORDER NO.				68 11 530	68 11 535	68 09 115	68 09 522		68 09 200	68 12 535			68 10 890	68 09 165	68 11 530	68 09 115
ц Ш				XXS OV	A-VO SXX	XS EC Organic Vapors	XS EC Organic Vapors A		XS EC Odorant	XXS Odorant			XXS Cl ₂	XS EC Cl ₂	XXS OV	XS EC Organic Vapors
dig 1940 and 19400 and 1940 and 1940 and 1940 and 1940 and 1940 an	0															
С С Т ЕХ ВИАЛ ПРЕХИСО ₂ 2 ЗААКРТ САТ ЕХ (РРР) 2 ЗААКРТ САТ ЕХ (РРР) 2 ЗААКРТ САТ ЕХ (РРР) 2 ЗААКРТ САТ ЕХ (РРР) 2 ЗААКРТ ПАССО САТ ЕХ ГОР 1 2 2 2 САТ ЕХ ГРР 2 ЗААКРТ ГАТ СА САТ ЕХ ГРР 2 2 2 2 2 2 2 2 2 2 2																
CAS NO.	74-96-4	110-80-5	107-15-3	75-21-8				103-11-7	75-08-1		637-92-3	622-96-8	7782-41-4		50-00-0	
CHEMICAL DESIGNATION	Ethylbromide	Ethyl cellosolve (2-Ethoxyethanol)	Ethylenediamine (1,2-Diaminoethane)	Ethylene oxide				2-Ethylhexylacrylate	Ethyl mercaptan (Ethanethiol)		Ethyl tert butyl ether (ETBE)	4-Ethyltoluene	Fluorine		Formaldehyde	

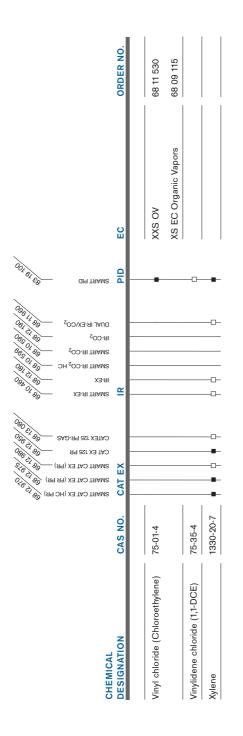


Sensitivity not yet determined Sensitivity data known

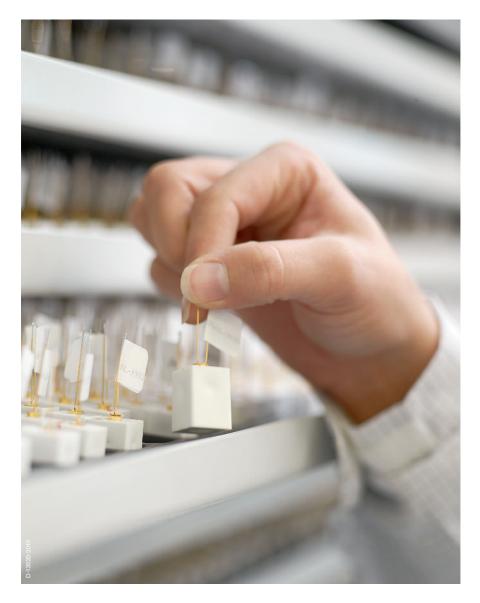
CHEMICAI		SMART CAT EX (HC PR) 99 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	900 страната и страна	dig TRAM2		
DESIGNATION	CAS NO.	CAT EX	IR 	OId	EC	ORDER NO.
Hydrogen cyanide	74-90-8				XXS HCN	68 10 887
					XXS HCN PC	68 13 165
					XS EC HCN	68 09 150
Hydrogen fluoride	7664-39-3				XS EC HF/ HCI	68 09 140
Hydrogen peroxide	7722-84-1				XS EC H ₂ O ₂	68 09 170
Hydrogen sulfide	7783-06-4				XXS H ₂ S	68 10 883
					XXS H ₂ S/CO	68 11 410
					XXS H ₂ S LC	68 11 525
					XXS H ₂ S HC	68 12 015
					XXS E H ₂ S	68 12 213
					XS EC H ₂ S	68 09 110
					XS EC H ₂ S HC	68 09 180
					XS 2 H ₂ S	68 10 370
					XS R H ₂ S	68 10 260
Hydrogen selenide	7783-07-5					
Consitivity Consitivity not vot d otorminod	-					



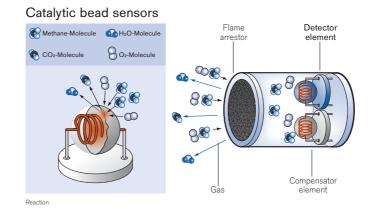
Sensitivity data known


CHEMICAL		SMART CAT EX (HC PR) SMART CAT EX (FR PR)	DNT IS EX.CO ³ 69, 1980 аументик CO ³ 69, 1980 аументик CO ³ 69, 1980 аументик CO ³ HC 69, 1980 аументик	ool et et all the terms		
DESIGNATION	CAS NO.	CAT EX	R	DID	EC	ORDER NO.
Methyl mercaptan (Methanethiol)	74-93-1				XS EC Odorant	68 09 200
					XXS Odorant	68 12 535
Methyl n-amyl ketone (2-Heptanone)	110-43-0					
Methyl tert-butyl ether (MTBE)	1634-04-4	-0-		-		
Methylen chloride	75-09-2					
Methylmethacrylate	80-62-6				XXS OV	68 11 530
					XS EC Organic Vapors A	68 09 522
Monomethylamine	74-89-5				XS EC Amine	68 09 545
					XXS Amine	68 12 545
Monomethylhydrazine	60-34-4				XS EC Hydrazine	68 09 190
					XS EC Hydrazine D	68 10 295
Napthalene	91-20-3			-0-		
Nitric acid	7697-37-2				XS EC HF/ HCI	68 09 140
2-Nitrotoluene	88-72-2					
3-Nitrotoluene	99-08-1			-0-		
Nitrobenzene	98-95-3					
Sensitivity Sensitivity not yet determined data known	p					

GIIT TRAME	PID EC ORDER NO.	XXS NO2 68 10 884	XS EC NO ₂ 68 09 155	XXS NO ₂ LC 68 12 600	XXS NO 68 11 545	XS EC NO 68 09 125					XXS O ₂ 68 10 881	XXS E O ₂ 68 12 211	XS EC O ₂ LS 68 09 130	XS EC O ₂ 100 68 09 550	XS 2 O ₂ 68 10 375	XS R O ₂ LS 68 10 262	XXS Ozon 68 11 540
ВИАЯТ САТ ЕХ (НС РЯ) ВИАА ПСАТ ЕХ (НС РЯ) ЗАМАЯТ САТ ЕХ (РЯ) ЗАМАЯТ САТ ЕХ (РЯ) ЗАМАЯТ ПРЕСО САТ ЕХ ТЗБ РЯ СААБ ЗАМАЯТ ПРЕСО САТ ЕХ ТЗБ РЯ СААБ ЗАМАЯТ ПРЕСО САТ ЕХ ТЗБ РЯ СААБ САТ ЕХ ТЗБ РЯ СААБ САБ ЕХ СААБ	CAT EX IR																
66 (d.01) / 110 III / 1	CAS NO.	10102-44-0			10102-43-9		111-84-2	111-65-9	540-84-1		7782-44-7						10028-15-6
CHEMICAL	DESIGNATION	Nitrogen dioxide			Nitrogen monoxide		n-Nonane	n-Octane	iso-Octane	(2,2,4-Trimethylpentane)	Oxygen						Ozon


CHEMICAL DESIGNATION n-Propanol Propene Propene Propyl acetate Propylene Oxide (1,2 Epoxy propane)	CAS NO. 71-23-8 71-23-8 115-07-1 115-07-1 115-07-1 75-56-9 7803-62-5	Сотех 135 Ря-GAS		EC XXS OV XS EC Organic Vapors XXS OV XXS OV XXS PH ₃	ORDER NO. 68 11 530 68 09 115 68 11 530 68 11 530 68 10 886 68 10 886
	100-42-5			XS EC Hydride XXS OV XS EC Organic Vapors A	68 09 135 68 11 530 68 09 522
Sulphur dioxide Tetrachloroethylene (PCE) Tetraethyl lead	7446-09-5 127-18-4 78-00-2			XXS SO2 XS EC SO2	68 10 885 68 09 160

CHEMICA		SMART CAT EX (HC PR) 9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ВИАТ IREX CO ₂ 08 0 89 SMART IREX 02 08 0 89 SMART IR CO ₂ HC 08 0 89	dol el taama		
DESIGNATION	CAS NO.	CAT EX	IR	DID	EC	ORDER NO.
Tetrahydrothiophene	110-01-0				XS EC Odorant	68 09 200
					XXS Odorant	68 12 535
Thiophene	110-02-1					
Toluene	108-88-3			•		
o-Toluidine	95-53-4			-0-		
2,4-Toluene diisocyanate	584-84-9					
Trichloroethylene	79-01-6			-		
Triethylamine	121-44-8			-0-	XS EC Amine	68 09 545
					XXS Amine	68 12 545
Trimethylamine	75-50-3				XS EC Amine	68 09 545
					XXS Amine	68 12 545
1,3,5-Trimethylbenzene	108-67-8					
Vinyl acetate	108-05-4			-0-	XXS OV-A	68 11 535
					XS EC Organic Vapors	68 09 115
Vinyl bromide	593-60-2			-0-		



4.3 Dräger CatEx sensors

Under certain circumstances, flammable gases and vapors can be oxidized using the oxygen in the ambient air, causing heat of the reaction to be released. Typically, this is achieved through the use of special and suitably heated catalyst material, which slightly increases its temperature through the resulting heat of reaction. This slight increase in temperature is a measure of the gas concentration. A small platinum coil is embedded in a porous ceramic bead with a diameter of less than 1 mm (0.04 in.). A current flows through the platinum coil, heating the pellistor to several hundred degrees. If the pellistor contains a suitable catalytic material, then its temperature will increase in the presence of flammable gases, which in turn causes the resistance of the platinum coil to increase. This change in resistance can then be evaluated electronically. The oxygen required for the combustion comes from the ambient air. This sensor works on the basis of the catalytic bead principle.

In order to eliminate changes in the ambient temperature, a second pellistor is used with almost the same structure, but which does not react to gas (it may, for example, contain no catalytic material). Coupled by a Wheatstone bridge, the two pellistors then form a sensor circuit, which is largely independent of the ambient temperature, and which can detect the presence of flammable gases and vapors. Because a catalytic bead sensor contains hot pellistors, it can – if the lower exposure level (LEL) is exceeded – become a source of ignition in its own right. This is prevented using a metal flame arrester. If an ignition occurs in the interior of the catalytic bead sensor, then the sensor's housing withstands the explosion pressure and the flame is cooled to below the ignition temperature of the gas by the flame arrester disk. This ensures that the flame does not penetrate through to the outside of the sensor. If the device is adjusted and calibrated accordingly, then the thermal conduction signal can be used to determine the gas concentration of methane between 0 and 100 Vol.-%.

DrägerSensor[®] Smart CatEx (HC PR) Order no. 68 12 970

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL				
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL				
	0.02 Vol% for the measuring range 0 to 5 Vol% CH ₄ (methane)				
	1 Vol% for the measuring range 5 to 100 Vol% CH_4 (methane)				
Measurement range:	0 to 100% LEL or				
	0 to 100 Vol% CH ₄ (methane)				
General technical specifications					
Ambient conditions					
Temperature:	(−20 to 55)°C (−4 to 131)°F				
Humidity:	(10 to 95)% RH				
Pressure:	(700 to 1,300) hPa				
Warm-up time:	≤ 5 minutes				

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH **METHANE IN AIR:**

Response time:	≤ 15 seconds (T ₅₀)
	≤ 25 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	≤ ± 2.5% of measured value
Linearity error	≤ ± 2% LEL (0–40% LEL)
	\leq ± 5% of measured value (40–100% LEL)
Long-term drift	
Zero point:	≤ ± 1% LEL/month
Sensitivity:	≤ ± 2% LEL/month
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F
Sensitivity:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.03% LEL/% RH
Sensitivity:	\leq ± 0.1% of measured value/% RH
Effect of sensor poisons:	Hydrogen sulphide H ₂ S 1000 ppmh $\leq \pm 5$ % of measured value
	Hexamethyldisiloxane HMDS 10 ppmh $\leq \pm 5$ % of measured value
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss is
	less than 50 %. Halogenated hydrocarbons, heavy metals, substan-
	ces containing silicone or sulfur, or substances that can polymerize
	\rightarrow potential poisoning.
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 20 seconds (T ₅₀)
	≤ 40 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 2.5\%$ of measured value
Linearity error:	
	$\leq \pm 10\%$ of measured value (40–100% LEL)
Long-term drift	
Zero point:	≤ ± 4% LEL/month
Sensitivity:	≤ ± 1% LEL/month
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F
Sensitivity:	$\leq \pm 0.3\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Zero point:	≤ ± 0.04% LEL/% RH
Sensitivity:	≤ ± 0.1% of measured value/% RH
-	

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 35 seconds at 0 to 5 Vol% (T ₉₀)
Measurement accuracy	1 Vol% CH4
Linearity error:	
0 to 50 Vol%	≤ ± 5 Vol%
50 to 100 Vol%	≤ ± 10% of measured value
Long-term drift	
Zero point:	≤ ± 3 Vol%/month
Sensitivity:	≤ ± 3 Vol%/month
Influence of temperature	
Sensitivity 0 to 50 Vol%	≤ ± 0.2 Vol%/K at (-20 to 40)°C (-4 to 104)°F
Sensitivity 50 to 100 Vol%	$\leq \pm 0.3\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F
Influence of humidity	
Sensitivity 0 to 50 Vol%	≤ ± 0.15 Vol%/% RH
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH

TECHNICAL SPECIFICATIONS

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	≤ 60 seconds (T ₅₀)
	≤ 320 seconds (T ₉₀)
Response time, declining:	≤ 130 seconds (T ₅₀)
	≤ 1000 seconds (T ₉₀)

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (HC PR) is used to detect flammable gases and vapors in the ambient air: LEL monitoring or, in the case of methane, also Vol.-% monitoring. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons. These sensors have been tested according to EN 61779-1 and EN 61779-4 for methane, propane, and nonane for 0–100% LEL, and for 0–100 Vol.-% for methane in accordance with EN 61779-1 and EN 61779-5. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH_4) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If an LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading in % LEL
Acetone	CH ₃ COCH ₃	1.25	31
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26
Acetic acid	CH₃COOH	3.00	23
Ammonia	NH ₃	7.70	58
Benzene	C ₆ H ₆	0.60	22
Butane	C ₄ H ₁₀	0.70	27
Butanone	CH ₃ COC ₂ H ₅	0.75	22
Carbon monoxide	CO	5.45	41
Cyclohexane	C ₆ H ₁₂	0.50	21
Cyclopentane	C ₅ H ₁₀	0.70	27

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Diethyl ether	(C ₂ H ₅) ₂ O	0.85	24
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	26
Ethane	C ₂ H ₆	1.20	34
Ethanol	C ₂ H ₅ OH	1.55	31
Ethene	C ₂ H ₄	1.20	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24
Ethine	C ₂ H ₂	1.15	34
Heptane	C ₇ H ₁₆	0.40	18
Hexane	C ₆ H ₁₄	0.50	21
Hydrogen	H ₂	2.00	48
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22
Methane	CH ₄	2.20	50
Methanol	CH ₃ OH	3.00	39
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27
n-butanol	C4H9OH	0.70	19
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	0.60	19
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	C ₆ H ₅ CH ₃	0.50	19
Xylene	C ₆ H4(CH ₃) ₂	0.55	19

DrägerSensor[®] Smart CatEx (PR)

Order no. 68 12 980

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL		
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL,		
	0.02 Vol% for the measuring range 0 to 5 Vol% CH4 (methane)		
Measurement range:	0 to 100% LEL		
General technical specifications	_		
Ambient conditions	_		
Temperature:	(-20 to 55)°C (-4 to 131)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 5 minutes		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	≤ 15 seconds (T ₅₀)		
	≤ 25 seconds (T ₉₀)		
Measurement accuracy			
Sensitivity:	\leq ± 2.5% of measured value		
Linearity error:	≤ ± 2% LEL (0-40% LEL)		
	\leq ± 5% of measured value (40–100% LEL)		
Long-term drift			
Zero point:	≤ ± 1% LEL/month		
Sensitivity:	≤ ± 2% LEL/month		
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (-20 to 40)°C (-4 to 104)°F		
Sensitivity:	\leq ± 0.3% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 0.03% LEL/% RH		
Sensitivity:	\leq ± 0.1% of measured value/% RH		
Effect of sensor poisons:	Hydrogen sulphide H ₂ S 1000 ppmh $\leq \pm 5$ % of measured value		
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5 % of measured value		
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20 % of measured value		
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss		
	is less than 50 %. Halogenated hydrocarbons, heavy metals, sub-		
	stances containing silicone or sulfur, or substances that can poly-		
	merize \rightarrow potential poisoning.		
Test gas:	approx. 2 Vol% CH ₄ test gas		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	\leq 20 seconds (T ₅₀)			
	\leq 40 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	$\leq \pm 2.5\%$ of measured value			
Linearity error:	≤ ± 4% LEL (0-40% LEL)			
	$\leq \pm 10\%$ of measured value (40–100% LEL)			
Long-term drift				
Zero point:	≤ ± 4% LEL/month			
Sensitivity:	≤ ± 1% LEL/month			
	typ. values for X-am 7000 \leq ± 1% LEL/month			
Influence of temperature				
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F			
Sensitivity:	$\leq \pm 0.3\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F			
Influence of humidity				
Zero point:	≤ ± 0.04% LEL/% RH			
Sensitivity:	≤ ± 0.1% of measured value/% RH			

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH NONANE IN AIR:

Response time, rising:	\leq 60 seconds (T ₅₀)
	≤ 320 seconds (T ₉₀)
Response time, declining:	\leq 130 seconds (T ₅₀)
	≤ 1000 seconds (T ₉₀)

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (PR) is used to detect flammable gases and vapors around the LEL in the ambient air. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons. These sensors have been tested according to EN 61779-1 and EN 61779-4 for methane, propane, and nonane for a range of 0–100% LEL. Substance-specific data is stored in the data memory for 35 different gases and vapors.

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration	Displayed	
		in Vol%	reading in %	
			LEL	
Acetone	CH ₃ COCH ₃	1.25	31	
1,3-butadiene	CH ₂ CHCHCH ₂	0.70	26	
Acetic acid	CH₃COOH	3.00	23	
Ammonia	NH ₃	7.70	58	
Benzene	C ₆ H ₆	0.60	22	
Butane	C ₄ H ₁₀	0.70	27	
Butanone	CH ₃ COC ₂ H ₅	0.75	22	
Carbon monoxide	СО	5.45	41	
Cyclohexane	C ₆ H ₁₂	0.50	21	
Cyclopentane	C ₅ H ₁₀	0.70	27	
Diethyl ether	$(C_2H_5)_2O$	0.85	24	
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	26	
Ethane	C ₂ H ₆	1.20	34	
Ethanol	C_2H_5OH	1.55	31	
Ethene	C ₂ H ₄	1.20	36	
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.00	24	
Ethine	C_2H_2	1.15	34	
Heptane	C ₇ H ₁₆	0.40	18	
Hexane	C ₆ H ₁₄	0.50	21	
Hydrogen	H ₂	2.00	48	
1-Methoxy-Propanol-2	C ₄ H ₁₀ O ₂	0.90	22	
Methane	CH ₄	2.20	50	
Methanol	CH ₃ OH	3.00	39	
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.80	27	
n-butanol	C4H ₉ OH	0.70	19	

Gas/vapor	Chem. symbol	Test gas concentration	Displayed
		in Vol%	reading
			in % LEL
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.60	17
Nonane	C ₉ H ₂₀	0.35	13
Octane	C ₈ H ₁₈	0.40	17
Pentane	C ₅ H ₁₂	0.55	21
Pentanol	C ₅ H ₁₁ OH	0.60	19
Propane	C ₃ H ₈	0.85	28
Propanol	C ₃ H ₇ OH	0.60	19
Propene	C ₃ H ₆	1.00	32
Propylene oxide	C ₃ H ₆ O	0.95	23
Styrol	C ₆ H ₅ CHCH ₂	0.50	15
Toluene	C ₆ H ₅ CH ₃	0.50	19
Xylene	C ₆ H4(CH ₃) ₂	0.55	19

DrägerSensor® Smart CatEx (FR PR) Order no. 68 12 975

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	2 years	> 3 years	-

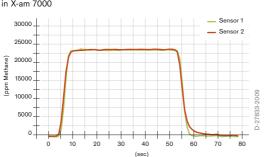
MARKET SEGMENTS

Gas supply companies (methane leak detection), telecommunications, shipping, sewage, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL		
Resolution:	1.0% LEL for the measuring range 0 to 100% LEL		
	0.02 Vol% for the measuring range 0 to 5 Vol% CH_4 (methane)		
	1 Vol% for the measuring range 5 to 100 Vol% CH_4 (methane)		
Measurement range:	0 to 100% LEL or		
	0 to 100 Vol% CH ₄ (methane)		
General technical specifications			
Ambient conditions			
Temperature:	(−20 to 55)°C (−4 to 131)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 5 minutes		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH **METHANE IN AIR:**


Response time:	\leq 7 seconds (T ₅₀)			
	≤ 9 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	≤ ± 2.5% of measured value			
Linearity error:	≤ ± 4% LEL (0-40% LEL)			
	\leq ± 10% of measured value (40–100% LEL)			
Long-term drift				
Zero point:	≤ ± 3% LEL/month			
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month			
Sensitivity:	≤ ± 3% LEL/month			
	typ. values for X-am 7000 $\leq \pm$ 1% LEL/month			
Influence of temperature				
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F			
Sensitivity:	\leq ± 0.2% of measured value/K at (-20 to 40)°C (-4 to 104)°F			
Influence of humidity				
Zero point:	≤ ± 0.05% LEL/% RH			
Sensitivity:	\leq ± 0.3% of measured value/% RH			
Effect of sensor poisons:	Hydrogen sulphide H ₂ S 1000 ppmh $\leq \pm$ 10% of measured value			
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ± 5% of measured value			
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ± 20% of measured value			
	After an exposure of 10 ppm HDMS for 5 hours, the sensivity loss is			
	less than 50%. Halogenated hydrocarbons, heavy metals, substan-			
	ces containing silicone or sulfur, or substances that can polymerize			
	\rightarrow potential poisoning.			

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 18 seconds (T ₉₀) at 0 to 5 Vol%			
Measurement accuracy				
Sensitivity:	\leq ± 2.5% of measured value			
Linearity error				
0 to 50 Vol%	≤ ± 5 Vol%			
50 to 100 Vol%	≤ ± 10% of measured value			
Long-term drift				
Zero point:	≤ ± 0.3 Vol%/month			
Sensitivity	≤ ± 3 Vol%/month			
Influence of temperature				
Sensitivity 0 to 50 Vol%	≤ ± 0.2 Vol%/K at (−20 to 40)°C (−4 to 104)°F			
Sensitivity 50 to 100 Vol%	$\leq \pm 0.3\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F			
Influence of humidity				
Sensitivity 0 to 50 Vol%	≤ ± 5 Vol%/% RH			
Sensitivity 50 to 100 Vol%	≤ ± 0.2% of measured value/% RH			
Test gas: approx. 2 Vol% or 50 Vol% CH ₄ test gas				
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas			

SPECIAL CHARACTERISTICS

The DrägerSensor® Smart CatEx (FR PR) is especially suitable for detecting leaks on account of its fast response time (T_{90}) of less than 9 seconds for methane. It has an excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons.

Response time of DrägerSensor® Smart CatEx (FR PR) in X-am 7000

DrägerSensor® CatEx 125 PR

Order no. 68 12 950

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 1/2/50	- 000	yes	3 years	> 4 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, sewage treatment plants, tunneling.

TECHNICAL SPECIFICATIONS

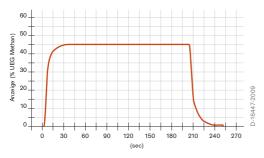
Detection limit:	2% LEL		
Resolution:	1.0% LEL for measuring range 0 to 100% LEL,		
	1.0 Vol% for measuring range 0 to 100 Vol% CH ₄ (methane)		
Measurement range:	0 to 100% LEL in Dräger X-am 2500/5000 or		
	0 to 100 Vol.% CH4 (methane) in Dräger X-am 5000		
General technical specifications			
Ambient conditions			
Temperature:	(-20 to 55)°C (-4 to 131)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 3 minutes		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	\leq 17 seconds (T ₉₀)		
	\leq 7 seconds (T ₅₀)		
	typical values for X-am 2500 T ₉₀ at 25 °C (77 °F) ≤ 12 seconds		
	typical values for X-am 5000 T ₉₀ at 25 °C (77 °F) ≤ 10 seconds		
Measurement accuracy:	≤ ± 1% LEL		
Long-term drift			
Zero point:	$\leq \pm 2\%$ LEL/month		
	typical value in X-am 2500/5000 ≤ 1 % LEL/month		
Sensitivity:	≤ ± 2% LEL/month		
	typical value in X-am 2500/5000 ≤ 1 % LEL/month		
Influence of temperature			
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F		
Sensitivity:	\leq ± 0.1% of measured value/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity			
Zero point:	≤ ± 1% LEL		
Sensitivity:	\leq ± 2% LEL (test gas 50% LEL), effect of humidity when calibrating		
	at 0% relative humidity in the range of 10-90 % at 40°C		
Effect of sensor poisons:	Hydrogen sulphide H ₂ S, 1000 ppmh $\leq \pm 2\%$ of the measured value		
	Hexamethyldisiloxane HMDS 10 ppmh ≤ ±5 % of the measured value		
	Hexamethyldisiloxane HMDS 30 ppmh ≤ ±20 % of the measured		
	value. After an exposure to HMDS of 10 ppm for 5 hours, the loss of		
	sensitivity is less than 50%. Halogenated hydrocarbons, volatile sub-		
	stances containing sulphur, heavy metals and silicon, or substances		
	capable of polymerisation: poisoning possible.		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH PROPANE IN AIR:

Response time:	≤ 10 seconds (T ₅₀)				
	\leq 32 seconds (T ₉₀)				
	typical values for X-am 2500 T ₉₀ at 25 °C (77 °F) ≤ 24 seconds				
	typical values for X-am 5000 T ₉₀ at 25 °C (77 °F) ≤ 14 seconds				
Measurement accuracy:	1 % LEL				
Long-term drift					
Zero point:	≤ ± 2% LEL/month				
Sensitivity:	≤ ± 2% LEL/month				
Influence of temperature					
Zero point:	≤ ± 0.1% LEL/K at (−20 to 40)°C (−4 to 104)°F				
Sensitivity:	$\leq \pm 0.1\%$ of measured value/K at (-20 to 40)°C (-4 to 104)°F				
Influence of humidity					
Zero point:	≤ ± 1% LEL				
Sensitivity:	≤ ± 2% LEL				


FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

Response time:	≤ 30 seconds at 5 to 100 Vol%		
Measurement accuracy	≤ ± 1 % LEL		
Linearity error:			
0 to 50 Vol%	≤ ± 5 Vol%		
50 to 100 Vol%	≤ ± 10% of measured value		
Long-term drift			
Zero point:	$\leq \pm 3$ Vol%/month		
Sensitivity:	≤ ± 3 Vol%/month		
Influence of temperature:	≤ ± 0.15 Vol%/K at (-20 to 40)°C (-4 to 104)°F		
Influence of humidity:	≤ ± 0.15 Vol%/ %RH at 40°C / 104°F		
Test gas:	approx. 2 Vol% or 50 Vol% CH ₄ test gas		

SPECIAL CHARACTERISTICS

The DrägerSensor® CatEx 125 PR (Poison Resistant) is used to detect flammable gases and vapors. The detection of hydrocarbons from methane to nonane is certified by a measurement performance certificates for use in the Dräger X-am 1/2/5000 series in accordance with EN 60079-29-1 and EN 50271. It also has a small long-term drift, few influence of humidity and excellent poison resistance against hydrogen sulphide, siloxiane and other sensor poisons.

Ansprechzeit des DrägerSensor CatEx 125 PR im X-am 5000 bei 45% UEG Methan

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH_4) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Acetone	CH ₃ COCH ₃	1.25	31
Acetic acid	CH ₃ COOH	7.7	57
Ammonia	NH ₃	6.16	48
Benzene	C ₆ H ₆	0.6	25
Butadiene -1,3	CH ₂ CHCHCH ₂	0.7	27
Butane	C ₄ H ₁₀	0.7	26
n-butanol	C ₄ H ₉ OH	0.7	20
Butanone	CH ₃ COC ₂ H ₅	0.75	22
n-butyl acetate	CH ₃ COOC ₄ H ₉	0.6	18
Carbon monoxide	СО	5.45	32
Cyclohexane	C ₆ H ₁₂	0.5	21
Cyclopentane	C ₅ H ₁₀	0.7	27
Diethylamine	(C ₂ H ₅) ₂ NH	0.85	28

Gas/vapor	Chem. symbol	Test gas concentration in Vol%	Displayed reading in % LEL
Diethyl ether	$(C_2H_5)_2O$	0.85	27
Ethane	C ₂ H ₆	1.2	35
Ethanol	C ₂ H ₅ OH	1.55	33
Ethene	C_2H_4	1.2	36
Ethine	C_2H_2	1.15	36
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.0	25
Heptane	C ₇ H ₁₆	0.4	17
Hexane	C ₆ H ₁₄	0.5	21
Hydrogen	H ₂	2.0	49
Methane	CH ₄	2.2	50
Methanol	CH₃OH	3.0	42
Methyl tert-butyl ether (MTBE)	CH ₃ OC(CH ₃) ₃	0.8	27
Nonane	C ₉ H ₂₀	0.35	15
1-Methoxy-Propanol-2-	C ₄ H ₁₀ O ₂	0.9	23
Octane	C ₈ H ₁₈	0.4	18
Pentane	C ₅ H ₁₂	0.55	22
Pentanol	C₅H11OH	0.6	19
Propane	C ₃ H ₈	0.85	29
Propanol	C ₃ H ₇ OH	1.00	27
Propene	C ₃ H ₆	1.00	35
Propylene oxide	C ₃ H ₆ O	0.95	25
Styrene	C ₆ H ₅ CHCH ₂	0.5	11
Toluene	C ₆ H ₅ CH ₃	0.5	21
Xylene	C ₆ H ₄ (CH ₃) ₂	0.55	22

DrägerSensor[®] CatEx 125 PR-Gas

Order no. 68 13 080

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 2500	-	yes	2 years	> 3 years	-
Dräger X-am 5000	-	yes	2 years	> 3 years	_

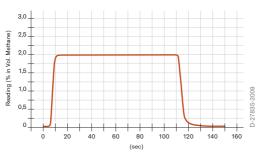
MARKET SEGMENTS

Mining, telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, landfills, biogas plants, sewage treatment plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	2% LEL
Resolution:	1.0% LEL for measuring range 0 to 100% LEL or
	1.0 Vol% for measuring range 0 to 100 Vol% CH ₄ (methane)
Measurement range:	0 to 100% LEL or 0 to 100 Vol% CH ₄ (methane)
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 55)°C (-4 to 131)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes

FOR THE MEASUREMENT RANGE 0 TO 100% LEL WHEN CALIBRATED WITH METHANE IN AIR:

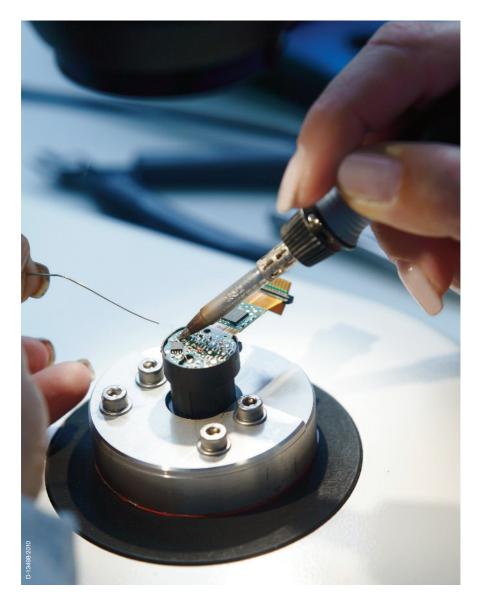

Response time:	≤ 7 seconds (T ₅₀)
	≤ 10 seconds (T ₉₀)
Measurement accuracy:	≤ ± 1% LEL
Long-term drift	
Zero point:	≤ ± 3% LEL/month
Sensitivity:	≤ ± 3% LEL/month
Influence of temperature	
Zero point:	≤ ± 0.1% LEL/K
Sensitivity:	≤ ± 0.2% of measured value/K
Influence of humidity	
Zero point:	≤ ± 1% LEL
Sensitivity:	≤ ± 2% LEL

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CH4:

onds (T ₉₀) at 0 to 100 Vol% -% of measured value
-%
of measured value
-%/month
-%/month
/ol%/K at (-20 to 40)°C (-4 to 104)°F
of measured value/K at (-20 to 40)°C (-4 to 104)°F
ol%/RH.
of measured value/% RH
Vol% or 50 Vol% CH ₄ test gas
sulphide H ₂ S, 1000 ppmh $\leq \pm 2\%$ of the measured value yldisiloxane HMDS 10 ppmh $\leq \pm 5\%$ of the measured value yldisiloxane HMDS 30 ppmh $\leq \pm 20\%$ of the measured value xposure to HMDS of 10 ppm for 5 hours, the loss of is less than 50%. ted hydrocarbons, volatile substances containing sulphur,

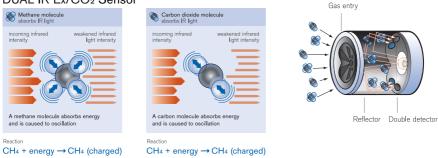
SPECIAL CHARACTERISTICS

This sensor is optimized for the detection of methane. It has a response time (T_{90}) of less than 10 seconds. The pellistors are impact-protected, which makes the sensor especially shock-proof. In conjunction with this sensor, the Dräger X-am 5000 is approved for Zone 0/T4 worldwide. The LEL and the Vol.-% measuring range can be used in the Dräger X-am 5000.


Response time of DrägerSensor CatEx 125 PR-Gas in X-am 5000

DETECTING OTHER GASES AND VAPORS

Through the use of cross sensitivities for the measurement range of 0 to 100% LEL. The figures given are typical readings when calibrated with methane (CH₄) and apply to new sensors without additional diffusion barriers. A LEL of 4.4 Vol.-% was used for methane. If a LEL of 5.0 Vol.-% is used, then the figures in the table must be multiplied by a factor of 0.88. The table does not claim to be complete. The sensor may also be sensitive to other gases and vapors.


Gas/vapor	Chem. symbol	Test gas	Displayed
		concentration	reading
		in Vol%	in % LEL
Butane	C ₄ H ₁₀	0.70	30
Butene	C ₄ H ₈	0.75	30
Ethane	C ₂ H ₆	1.20	35
Ethene	C ₂ H ₄	1.20	30
Ethine	C ₂ H ₂	1.15	31
Hydrogen	H ₂	2.00	51
Methane	CH ₄	2.20	50
Propane	C ₃ H ₈	0.85	35
Propene	C ₃ H ₆	1.00	33

4.4 Dräger infrared sensors

Every gas absorbs light in a particular way; some even absorb visible light (wavelength of 0.4 to 0.8 micrometers), which is why chlorine is yellowish green, bromine and nitrogen dioxide are brown, iodine vapor is violet, and so on – but unfortunately they are only visible in high (deadly) concentrations.

DUAL IR Ex/CO2 Sensor

Hydrocarbons and carbon dioxide, on the other hand, absorb light in a certain wavelength range, (hydro carbons 3.3 to 3.5 μ m; CO₂ approx. 4 μ m) – and that can be utilized for detection purposes, since the main components of air (oxygen, nitrogen, and argon) do not absorb radiation in that range. In a container containing gaseous hydrocarbons such as methane or propane or carbon dioxide, the intensity of an incoming infrared light will be weakened, and the degree of this weakening is dependent on the concentration of gas. With the DrägerSensor Dual IR Ex / CO₂ a simultaneous measurement is possible.

Air: infrared light passes through without weakening – intensity remains the same Gas (e.g. methane): infrared light becomes weaker as it passes through – intensity drops in relation to the concentration of methane. This is the principle of an infrared measuring instrument that utilizes Dräger IR sensors. Flammable gases and vapors are mostly hydrocarbons, and hydrocarbons are almost always detectable by means of their typical IR absorption levels.

Functional principle: the ambient air to be monitored passes into the measuring cuvette by means of diffusion or through the use of a pump. The infrared transmitter produces broad-band radiation that passes through a window into the cuvette, where it is reflected off the mirrored walls and passes through another window, falling onto the double detector. This double detector consists of a measurement and a reference detector. If the gas mixture contains a percentage of e.g. hydrocarbons, then some of the radiation is absorbed and the measurement detector produces a reduced electrical signal. The signal from the reference detector remains unchanged. Fluctuations in the performance of the infrared transmitter, dirt on the mirror and windows, and interference from dust or aerosols in the ambient air have the same effect on both sensors, and are fully compensated.

DrägerSensor[®] Smart IR Ex

Order no. 68 10 460

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	5 years	> 5 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	3% LEL/0.1 Vol%	
Resolution:	0.5% LEL	
Measurement range:	0 to 100% LEL/0 to 100 Vol%	
	depending on the gas being measured	
Ambient conditions		
Temperature:	(-20 to 60)°C (-4 to 140)°F	
Humidity:	(10 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Warm-up time:	≤ 4 minutes	

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH₄ WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	Diffusion mode ≤ 20 seconds (T ₅₀)			
	Diffusion mode ≤ 50 seconds (T ₉₀)			
	Pump mode \leq 20 seconds (T ₅₀)			
	Pump mode ≤ 41 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	≤ ± 2.0% LEL methane at 50% LEL			
Linearity error, typical:	$\leq \pm 5\%$ of measured value			
Long-term drift				
Zero point:	≤ ± 2.5% LEL methane/month			
Sensitivity:	≤ ± 8% LEL methane/month at 50% LEL			
Influence of temperature				
Zero point:	≤ ± 0.05% LEL methane/K at (−20 to 60)°C (−4 to 140)°F			
Sensitivity:	\leq ± 0.15% LEL methane/K at 50% LEL and (–20 to 60)°C			
	(-4 to 140)°F			
Effect of humidity, at 40°C (104 °F)				
(0 to 95% RH, non-condensing)				
Zero point:	≤ ± 0.05% LEL methane/% RH			

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 1.7 VOL.-% $C_{3}H_{8}$ WHEN CALIBRATED WITH PROPANE IN AIR:

Measurement accuracy			
Sensitivity	≤ ± 1.0% LEL propane at 50% LEL		
Linearity error, typical:	\leq ± 4.0% of measured value		
Long-term drift			
Zero point:	≤ ± 1.0% LEL propane/month		
Sensitivity	≤ ± 2.0% LEL propane/month at 50% LEL		
Influence of temperature			
Zero point:	≤ ± 0.03% LEL propane/K		
Sensitivity	≤ ± 0.08% LEL propane/K		
Effect of humidity, at 40°C (104 °F)			
(0 to 95% RH, non-condensing)			
Zero point:	≤ ± 0.03% LEL propane/% RH		
Test gas:	2 Vol% CH ₄		
	0.9 Vol% C ₃ H ₈		

SPECIAL CHARACTERISTICS

This sensor can be used for LEL monitoring and Vol.-% monitoring for some gases. The sensor's database can contain up to 50 different gases. It is also the ideal sensor for measuring hydrocarbons in an inert atmosphere, since its measuring method does not depend on the presence of oxygen. This sensor also has a very long life time, and there is no risk of poisoning from sulfurous or silicone compounds.

COMPATIBLE GASES AND MEASUREMENT RANGES:

Sensor precalibration

The sensor can be delivered with all the necessary calibration data available. The sensor's database can contain up to 50 different gases. The zero point and sensitivity are precalibrated in the sensor for methane (0 to 100% LEL) and propane (0 to 100% LEL). The Vol.-% and % LEL readings are differentiated by displaying the measured gas in upper- and lower-case letters (e.g. ch_4 for 0 to 100% LEL and CH₄ for 0 to 100 Vol.-%).

Gas	Data set name	Measurement range
n-butane	buta	0 to 100% LEL 2)
n-BUTANE	BUTA	0 to 100 Vol%
Ethene	c ₂ h ₄	0 to 100% LEL 2)
ETHENE	C ₂ H ₄	0 to 100 Vol%
Ethanol	EtOH	0 to 100% LEL 2)
Ex	Ex	0 to 100% LEL
Liquid petroleum gas	LPG	0 to 100% LEL 2) /
	(50% propane + 50% butane) ³⁾	0 to 100 Vol%
JetFuel	JetF	0 to 100% LEL 2)
Methane	ch ₄	0 to 100% LEL 2)
METHANE	CH ₄	0 to 100 Vol%
n-nonane	Nona	0 to 100% LEL 2)
n-pentane	Pent	0 to 100% LEL 2)
Propane	c ₃ h ₈	0 to 100% LEL 2)
PROPANE	C ₃ H ₈	0 to 100 Vol%
Toluene	Tolu	0 to 100% LEL 2)

²⁾ LEL figures depend on country-specific standards.

³⁾ The figures in the table assume a composition of 50% propane and 50% butane. In practice, the composition of LPG fluctuates, which can lead to increased measurement errors.

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASUREMENT RANGE 0 TO 100% LEL:

Through the use of cross sensitivities when calibrated with propane (C_3H_8 , 100% LEL = 1.7 Vol.-%). The sensor can be used to detect the gases and vapors listed in the following table. The sensor must be configured to "Ex" measurement gas in the instrument. For example: if the instrument is subjected to 1.25 Vol.-% acetone (50% LEL), the instrument will show a reading of 19% LEL if configured to "Ex" measurement gas (calibration using 50% LEL / = 0.85 Vol.-% propane). Calibration using the target gas is preferable to calibration using a replacement gas.

Gas/vapor gas	Chemical	Test gas	Reading	Cross-
	symbol	concentration	displayed in % LEL	sensitivity
		in Vol%	(if calibrated to	factor
			0.85 Vol%	
			propane)	
Acetone	CH ₃ COCH ₃	1.25	19	2.63
Acetylene	C_2H_2		not possible	-
Benzene	C ₆ H ₆	0.6	11	4.44
Butadiene -1,3	CH ₂ CHCHCH ₂	0.7	13	3.85
Cyclohexane	C ₆ H ₁₂	-	on request	-
Cyclopentane	C ₅ H ₁₀	0.7	52	0.96
Dimethyl ether	$(C_2H_5)_2O$	1.35	62	0.81
Ethane	C_2H_6	1.35	76	0.66
Ethanol	C ₂ H ₅ OH	1.75	64	0.78
Ethene	C_2H_4	1.15	9	5.56
Ethyl acetate	CH ₃ COOC ₂ H ₅	1.05	35	1.43
Ethyl acrylate	$C_5H_8O_2$	0.85	23	2.17
i-butane	C ₄ H ₁₀	0.9	49	1.02
i-butene	C ₄ H ₈	0.8	32	1.56
Methanol	CH ₄ O	2.75	93	0.54
Methyl chloride	CH₃CI	3.8	42	1.19
Methylene chloride	CH ₂ Cl ₂	6.5	13	3.85
Methyl ethyl ketone	C ₄ H ₈ O	0.9	28	1.79
n-heptane	C7H16	0.55	45	1.11
n-hexane	C ₆ H ₁₄	0.5	42	1.19
n-nonane	C ₉ H ₂₀	-	on request	-
n-octane	C ₈ H ₁₈	0.4	32	1.56
n-pentane	C ₅ H ₁₂	0.7	54	0.93
Propane	C ₃ H ₈	0.85	50	1.00
n-propanol	C ₃ H ₇ OH	0.6	40	1.25
o-xylene	C ₆ H ₄ (CH ₃) ₂	0.5	13	3.85
Toluene	C ₆ H ₅ CH ₃	0.6	19	2.63

DrägerSensor[®] IR EX

Order no. 68 12 180

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5600	-	yes	5 years	> 5 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	1% LEL/0.2 Vol%		
Resolution:	1% LEL/0.1 Vol% (dependent on measuring range)		
Measurement range:	0 to 100% LEL/0 to 100 Vol%		
	depending on the gas being measured		
Ambient conditions			
Temperature:	(-20 to 50)°C (-4 to 120)°F		
Humidity:	(10 to 95)% RH		
Pressure:	(700 to 1,300) hPa		
Warm-up time:	≤ 5 minutes		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% $\rm CH_4$ when calibrated with methane in Air:

Response time:	Diffusion mode \leq 10 seconds (T ₅₀)			
	Diffusion mode ≤ 20 seconds (T ₉₀)			
	Pump mode \leq 10 seconds (T ₅₀)			
	Pump mode ≤ 15 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	≤ ± 1.5% LEL methane at 50% LEL			
Linearity error, typical:	\leq ± 3.5% of measured value or \leq ± 1.5% of the highest figure in the			
	set measuring (whichever is higher)			
Long-term drift				
Zero point:	≤ ± 1% LEL methane/month			
Sensitivity:	≤ ± 3% LEL methane/month at 50% LEL			
Influence of temperature				
Zero point:	\leq ± 0.02% LEL methane/K at (–20 to 50)°C (–4 to 120)°F			
Sensitivity:	≤ ± 0.1% LEL methane/K at 50% LEL and (−20 to 50)°C			
	(–4 to 120)°F			
Effect of humidity, at 40°C (104 °F)				
(0 to 95% RH, non-condensing)				
Zero point:	≤ ± 0.01% LEL methane/% RH			

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 1.7 VOL.-% C_3H_8 when calibrated with propane in Air:

Response time:	Diffusion mode \leq 12 seconds (T ₅₀)		
	Diffusion mode \leq 40 seconds (T ₉₀)		
	Pump mode ≤ 15 seconds (T ₅₀)		
	Pump mode ≤ 20 seconds (T ₉₀)		
Measurement accuracy			
Sensitivity	≤ ± 1.25% LEL propane at 50% LEL		
Linearity error, typical:	\leq ± 3.0% of measured value or \leq ± 1.0% of the highest figure in the		
	set measuring (whichever is higher)		
Long-term drift			
Zero point:	≤ ± 3% LEL propane/month		
Sensitivity	\leq ± 4% LEL propane/month at 50% LEL		
Influence of temperature			
Zero point:	≤ ± 0.06% LEL propane/K		
Sensitivity	\leq ± 0.13% LEL propane/K at 50% LEL		
Effect of humidity, at 40°C (104 °F)			
(0 to 95% RH, non-condensing)			
Zero point:	$\leq \pm 0.01\%$ LEL propane/% RH		
Test gas:	2 Vol% CH ₄ or 50 Vol% CH ₄		
	0.9 Vol% C ₃ H ₈		

SPECIAL CHARACTERISTICS

This sensor can be used for LEL monitoring, and Vol.-% monitoring for some gases. It is also the ideal sensor for measuring hydrocarbons in an inert atmosphere, since its measuring method does not depend on the presence of oxygen. This sensor also has a very long life time, and there is no risk of poisoning from sulfurous or silicone compounds.

COMPATIBLE GASES AND MEASURING RANGES:

Gas	Data set name	Measurement range	
n-butane	buta	0 to 100% LEL 2)	
n-BUTANE	BUTA	0 to 100 Vol%	
Ethene	c ₂ h ₄	0 to 100% LEL 2)	
ETHENE	C ₂ H ₄	0 to 100 Vol%	
Ethanol	EtOH	0 to 100% LEL 2)	
Ex	Ex	0 to 100% LEL	
JetFuel	JetF	0 to 100% LEL 2)	
Methane	ch ₄ 0 to 100% L		
METHANE	CH ₄ 0 to 100 Vol%		
n-nonane	Nona	0 to 100% LEL 2)	
n-pentane	Pent	0 to 100% LEL 2)	
Propane	c ₃ h ₄ 0 to 100% LEL		
PROPANE	C ₃ H ₈	0 to 100 Vol%	
Toluene	Tolu	0 to 100% LEL 2)	

²⁾ LEL figures depend on country-specific standards.

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASURING RANGE 0 TO 100% LEL

Gas/vapor gas	Chemical symbol	Test gas concentration in Vol%	Reading displayed in % LEL (if calibrated to 0.85 Vol% propane)	Cross- sensitivity factor
Acetone	C ₃ H ₆ O	1.25	18	2.78
Acetylene	C ₂ H ₂	_	not possible	_
Benzene	C ₆ H ₆	0.6	20	2.50
Butadiene -1,3	C ₄ H ₆	0.7	20	2.50
i-Butane	(CH ₃) ₃ CH	0.75	41	1.22
n-Butane	C ₄ H ₁₀	0.7	42	1.19
i-Butene	(CH ₃) ₂ C=CH ₂	0.8	31	1.61
n-Butanol	C ₄ H ₁₀ O	0.85	25	2.0
2-Butanone (MEK)	C ₄ H ₈ O	0.75	22	2.27
Butyl Acetate	C ₆ H ₁₂ O ₂	0.60	20	2.5
Cyclohexane	C ₆ H ₁₂	0.50	15	3.33
Cyclopentane	C5H ₁₀	0.7	47	1.06
Dimethyl Aether	C ₂ H ₆ O	1.35	51	0.98
Diethylamine	C ₄ H ₁₁ N	0.85	44	1.14
Diethyl Aether	(C ₂ H ₅) ₂ O	0.85	46	1.09
Ethane	C ₂ H ₆	1.2	65	0.77
Ethylalcohol	C ₂ H ₆ O	1.55	41	1.22
Ethene	C ₂ H ₄	1.2	15	3.33
Ethylacetate	C ₄ H ₈ O ₂	1.0	35	1.43
Ethyl acetate	C ₅ H ₈ O ₂	0.85	26	1.92
n-Heptane	C ₇ H ₁₆	0.55	36	1.39
n-Hexane	C ₆ H ₁₄	0.5	34	1.47
Methane	CH ₄	2.2	37	1.35
Methanol	CH ₄ O	3,0	92	0,54
n-Methoxy-2-Propanol	C ₄ H ₁₀ O ₂	0.9	26	1.92
Nethyl-tert-butyl aether	C ₅ H ₁₂ O	0.80	59	0.85
Methyl chloride	CH ₃ Cl	3.8	47	1.06
Methylen chlorid	CH ₂ Cl ₂	6.5	on request	-
Methyl ethyl ketone	C ₄ H ₈ O	0.75	22	2.27
n-Nonane	C9H ₂₀	0.35	on request	-
n-Octane	C8H ₁₈	0.40	20	2.50
n-Pentane	C5H12	0.55	36	1.39
Propane	C ₃ H ₈	0.85	50	1.00
n-Propylalcohol	C ₃ H ₇ OH	1.05	40	1.25
Propene	C ₃ H ₆	0.90	31	1.61
Propylene oxide	C ₃ H ₆ O	0.95	49	1.02
Toluene	C ₆ H ₅ CH ₃	0.50	19	2.63
o-Xylene	C ₆ H ₄ (CH ₃) ₂	0.5	11	4.55

D-2111-2011

DrägerSensor[®] IR Ex

| 107

DrägerSensor[®] Smart IR CO₂

Order no. 68 10 590

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	5 years	> 5 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	0.01 Vol%
Resolution:	0.01 Vol% CO ₂
Measurement range:	0 to 5 Vol% CO2
Ambient conditions	
Temperature:	(-20 to 60)°C (-4 to 140)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 4 minutes

FOR THE MEASUREMENT RANGE 0 TO 5 VOL.-% CO2

Response time	Diffusion mode ≤ 20 seconds (T ₅₀)				
	Diffusion mode \leq 45 seconds (T ₉₀ /T ₁₀)				
	Pump mode \leq 20 seconds (T ₅₀)				
	Pump mode \leq 50 seconds (T ₉₀ /T ₁₀)				
Measurement accuracy					
Sensitivity:	≤ ± 0.06 Vol% CO ₂ at 2.5 Vol%				
Linearity error, typical:	> 0 to \leq 1 Vol% CO ₂ <± 1 % of the full scale value				
	> 1 to \leq 4 Vol% CO ₂ <± 5 % of the measured value				
	> 4 to \leq 5 Vol% CO ₂ <± 10 % of the full scale value				
Long-term drift					
Zero point:	≤ ± 0.004 Vol% CO ₂ /month				
Sensitivity:	\leq ± 3% of measured value/month at 2.5 Vol%				
Influence of temperature					
Zero point:	≤ ± 0.002 Vol% CO ₂ /K at (−20 to 60)°C (−4 to 140)°F				
Sensitivity:	$\leq \pm 0.4\%$ of measured value/K at 2.5 Vol% and (-20 to 60)°C				
	(-4 to 140)°F				
Effect of humidity, at 40°C (104 °F)					
(0 to 95% RH, non-condensing)					
Zero point:	≤ ± 0.02 Vol% CO ₂				
Test gas:	2.5 Vol% CO ₂				

With its extremely low drift and low detection limit, this sensor is ideal for measuring carbon dioxide inside closed spaces, and for monitoring CO_2 in the workplace. As with all other IR sensors, it requires little maintenance and has a high level of long-term stability.

D-10120-2009

DrägerSensor[®] Smart IR CO₂

DrägerSensor[®] Smart IR CO₂ HC

Order no. 68 10 599

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	5 years	> 5 years	-

MARKET SEGMENTS

Biogas, process gas

TECHNICAL SPECIFICATIONS

Detection limit:	0.4 Vol%
Resolution:	0.2 Vol% CO ₂
Measurement range:	0 to 100 Vol% CO2
Ambient conditions	
Temperature:	(-20 to 60)°C (-4 to 140)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 4 minutes

FOR THE MEASUREMENT RANGE 0 TO 100 VOL.-% CO2

Response time:	Diffusion mode ≤ 20 seconds (T ₅₀)				
	Diffusion mode \leq 65 seconds (T ₉₀)				
	Pump mode ≤ 20 seconds (T ₅₀)				
	Pump mode ≤ 65 seconds (T ₉₀)				
Measurement accuracy					
Sensitivity:	≤ ± 2.0 Vol% CO ₂ at 50 Vol%				
Linearity error, typical:	$\leq \pm 1$ Vol% CO ₂ or $\leq \pm 5$ % of measured value (whichever is higher)				
Long-term drift					
Zero point:	$\leq \pm 0.2$ Vol% CO ₂ /month				
Sensitivity:	\leq ± 3% of measured value/month at 50 Vol%				
Influence of temperature					
Zero point:	≤ ± 0.004 Vol% CO ₂ /K at (−20 to 60)°C (−4 to 140)°F				
Sensitivity:	\leq ± 0.4% of measured value/K at 50 Vol% and (-20 to 60)°C				
	(-4 to 140)°F				
Effect of humidity, at 40°C (104 °F)					
(0 to 95% RH, non-condensing)					
Zero point:	≤ ± 0.5 Vol% CO ₂				
Test gas:	50 Vol% CO ₂				

This sensor is especially suitable if you need to measure high concentrations of CO_2 in process gas, for example. CO_2 concentrations of up to 100 Vol.-% can be detected reliably with this sensor. Other qualities that distinguish this sensor are low cross-sensitivities, long-term stability, and minimal maintenance.

DrägerSensor[®] IR CO₂

Order no. 68 12 190

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5600	-	yes	5 years	> 5 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	0.01 Vol% CO2
Resolution:	0.01 Vol% CO ₂ or 50 ppm CO ₂ (dependent on measuring range)
Measurement range:	0 to 5 Vol% CO ₂
Ambient conditions	
Temperature:	(-20 to 50)°C (-4 to 120)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	≤ 5 minutes
·	

FOR THE MEASUREMENT RANGE 0 TO 5 VOL.-% CO2

Response time:	Diffusion mode ≤ 15 seconds (T ₅₀)			
	Diffusion mode \leq 31 seconds (T ₉₀)			
	Pump mode \leq 10 seconds (T ₅₀)			
	Pump mode ≤ 15 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	≤ ± 0.08 Vol% CO ₂ at 2.5 Vol%			
Linearity error, typical:	\leq ± 10% of measured value or \leq ± 1.5% of the highest figure in the set			
	measuring range (whichever is higher)			
Long-term drift				
Zero point:	≤ ± 0.005 Vol% CO ₂ /month			
Sensitivity:	$\leq \pm 0.1$ Vol% CO ₂ /6 months			
Influence of temperature				
Zero point:	\leq \pm 0.0002 Vol% CO_2/K at (–20 to 50)°C (–4 to 120)°F			
Sensitivity:	\leq \pm 0.0015 Vol% CO_2/K at 2.5 Vol% and			
	(-20 to 50)°C (-4 to 120)°F			
Effect of humidity, at 40°C (104 °F)				
(0 to 95% RH, non-condensing)				
Zero point:	≤ ± 0.0001 Vol% CO ₂ /% RH			
Test gas:	2.5 Vol% CO ₂			

With its extremely low drift and low detection limit, this sensor is ideal for measuring carbon dioxide inside closed spaces, and for monitoring CO_2 in the workplace. As with all other IR sensors, it requires little maintenance and has a high level of long-term stability.

D-2108-2011

DrägerSensor[®] IR CO₂

DrägerSensor[®] DUAL IR Ex/CO₂

Order no. 68 11 960

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5600	-	yes	5 years	> 5 years	-

MARKET SEGMENTS

Telecommunications, shipping, sewage, gas supply companies, refineries, chemical industry, mining, landfills, biogas plants, tunneling.

TECHNICAL SPECIFICATIONS

Detection limit:	1% LEL/0.2 Vol% for IR Ex			
	0.01 Vol% CO ₂ for IR CO ₂			
Resolution:	1% LEL/0.1 Vol% for IR Ex (dependent on measuring range)			
	0.01 Vol% CO ₂ or 50 ppm CO ₂ for IR CO ₂			
	(dependent on measuring range)			
Measurement range:	0 to 100% LEL/0–100 Vol% CH4			
	0 to 5 Vol% CO ₂			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 120)°F			
Humidity:	(10 to 95)% RH			
Pressure:	(700 to 1,300) hPa			
Warm-up time:	≤ 5 minutes			

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 4.4 VOL.-% CH4 WHEN CALIBRATED WITH METHANE IN AIR:

Response time:	 Diffusion mode ≤ 10 seconds (T ₅₀)		
	Diffusion mode ≤ 20 seconds (T ₉₀)		
	Pump mode \leq 10 seconds (T ₅₀)		
	Pump mode \leq 15 seconds (T ₉₀)		
Measurement accuracy			
Sensitivity:	≤ ± 1.5% LEL methane at 50% LEL		
Linearity error, typical:	\leq ± 3.5% of measured value or \leq ± 1.5% of the highest figure in the		
	set measuring range (whichever is higher)		
Long-term drift			
Zero point:	≤ ± 1% LEL methane/month		
Sensitivity:	≤ ± 3% LEL methane/month at 50% LEL		
Influence of temperature			
Zero point:	≤ ± 0.02% LEL methane/K at (−20 to 50)°C (−4 to 120)°F		
Sensitivity:	\leq ± 0.1% LEL methane/K at 50% LEL and		
	(-20 to 50)°C (-4 to 120)°F		
Effect of humidity, at 40°C (104 °F)			
(0 to 95% RH, non-condensing)			
Zero point:	≤ ± 0.01% LEL methane/% RH		

FOR THE MEASUREMENT RANGE 0 TO 100% LEL OR 0 TO 1.7 VOL.-% $C_{3}H_{8}$ when calibrated with propane in Air

Response time:	Diffusion mode ≤ 12 seconds (T ₅₀)	
	Diffusion mode \leq 40 seconds (T ₉₀)	
	Pump mode \leq 15 seconds (T ₅₀)	
	Pump mode ≤ 20 seconds (T ₉₀)	
Measurement accuracy		
Sensitivity:	≤ ± 1.25% LEL propane at 50% LEL	
Linearity error, typical:	\leq ± 3.0% of measured value or \leq ± 1.0% of highest measuring range	
	figure (whichever is higher)	
Long-term drift		
Zero point:	≤ ± 3.0% LEL propane/month	
Sensitivity:	\leq ± 4.0% LEL propane/month at 50% LEL	
Influence of temperature		
Zero point:	≤ ± 0.06% LEL propane/K	
Sensitivity:	≤ ± 0.13% LEL propane/K at 50% LEL	
Effect of humidity, at 40°C (104 °F)		
(0 to 95% RH, non-condensing)		
Zero point:	≤ ± 0.01% LEL propane/% RH	

FOR THE MEASUREMENT RANGE 0 TO 5 VOL.-% CO2

Response time:	Diffusion mode \leq 15 seconds (T ₅₀)
	Diffusion mode \leq 31 seconds (T ₉₀)
	Pump mode \leq 10 seconds (T ₅₀)
	Pump mode ≤ 15 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	≤ ± 0.08 Vol% CO₂ at 2.5 Vol%
Linearity error, typical:	\leq ± 10% of measured value or \leq ± 1.5% of highest measuring range
	figure (whichever is higher)
Long-term drift	
Zero point:	≤ ± 0.005 Vol% CO ₂ /month
Sensitivity:	≤ ± 0.1 Vol% CO ₂ /6 months at 2.5% CO ₂
Influence of temperature	
Zero point:	≤ ± 0.0002 Vol% CO ₂ /K at (−20 to 50)°C (−4 to 120)°F
Sensitivity:	\leq ± 0.0015% Vol% CO ₂ /K at 2.5 Vol% and
	(-20 to 50)°C (-4 to 120)°F
Effect of humidity, at 40°C (104 °F)	
(0 to 95% RH, non-condensing)	
Zero point:	≤ ± 0.0001 Vol% CO₂/% RH
Test gas:	2 Vol% CH ₄ or 50 Vol% CH ₄
	2.5 Vol% CO ₂

This sensor enables flammable gases and carbon dioxide to be measured simultaneously with just one sensor. As with all other IR sensors, it requires little maintenance, has a high level of long-term stability, and is highly resistant to poisoning.

COMPATIBLE GASES AND MEASURING RANGES:

Gas	Data set name	Measurement range
Ethene	c ₂ h ₄	0 to 100% LEL 2)
ETHENE	C ₂ H ₄	0 to 100 Vol%
Ethanol	EtOH	0 to 100% LEL 2)
Ex	Ex	0 to 100% LEL
JetFuel	JetF	0 to 100% LEL 2)
Methane	ch ₄	0 to 100% LEL 2)
METHANE	CH ₄	0 to 100 Vol%
n-butane	buta	0 to 100% LEL 2)
n-BUTANE	BUTA	0 to 100 Vol%
n-nonane	Nona	0 to 100% LEL 2)
n-pentane	Pent	0 to 100% LEL 2)
Propane	c ₃ h ₄	0 to 100% LEL 2)
PROPANE	C ₃ H ₈	0 to 100 Vol%
Toluene	Tolu	0 to 100% LEL 2)

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASUREMENT RANGE 0 TO 100% LEL:

Through the use of cross sensitivities when calibrated with propane (C_3H_8 , 100% LEL = 1.7 Vol.-%). The sensor can be used to detect the gases and vapors listed in the following table. The sensor must be configured to "Ex" measurement gas in the instrument. The sensor may also be sensitive to other gases.

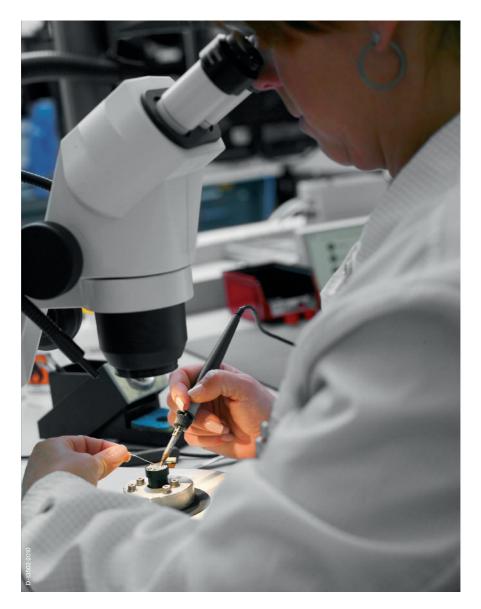
DETECTION OF OTHER GASES AND VAPORS FOR THE MEASURING RANGE

0 TO 100% LEL

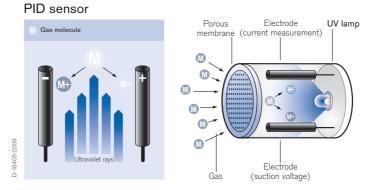
Gas/vapor gas	Chemical	Test gas	Reading	Cross-
	symbol	concentration	displayed in % LEL	sensitivity
		in Vol%	(if calibrated to	factor
			0.85 Vol% propane)	
Acetone	C ₃ H ₆ O	1.25	18	2.78
Acetylene	C ₂ H ₂	-	not possible	-
Benzene	C ₆ H ₆	0.6	20	2.50
Butadiene -1,3	C ₄ H ₆	0.7	20	2.50
i-Butane	(CH ₃) ₃ CH	0.75	41	1.22
n-Butane	C ₄ H ₁₀	0.7	42	1.19
i-Butene	(CH ₃) ₂ C=CH ₂	0.8	31	1.61

2) LEL figures depend on country-specific standards.

DETECTION OF OTHER GASES AND VAPORS FOR THE MEASURING RANGE 0 TO 100% LEL


Gas/vapor gas	Chemical	Test gas	Reading	Cross-
	symbol	concentration	displayed in % LEL	sensitivity
		in Vol%	(if calibrated to	factor
			0.85 Vol% propane)	
n-Butanol	C ₄ H ₁₀ O	0.85	25	2.0
2-Butanone (MEK)	C ₄ H ₈ O	0.75	22	2.27
Butyl Acetate	C ₆ H ₁₂ O ₂	0.60	20	2.5
Cyclohexane	C ₆ H ₁₂	0.50	15	3.33
Cyclopentane	C5H ₁₀	0.7	47	1.06
Dimethyl Aether	C ₂ H ₆ O	1.35	51	0.98
Diethylamine	C ₄ H ₁₁ N	0.85	44	1.14
Diethyl Aether	(C ₂ H ₅) ₂ O	0.85	46	1.09
Ethane	C ₂ H ₆	1.2	65	0.77
Ethylalcohol	C ₂ H ₆ O	1.55	41	1.22
Ethene	C_2H_4	1.2	15	3.33
Ethylacetate	C ₄ H ₈ O ₂	1.0	35	1.43
Ethyl acetate	C ₅ H ₈ O ₂	0.85	26	1.92
n-Heptane	C ₇ H ₁₆	0.55	36	1.39
n-Hexane	C ₆ H ₁₄	0.5	34	1.47
Methane	CH ₄	2.2	37	1.35
Methanol	CH ₄ O	3,0	92	0,54
n-Methoxy-2-Propanol	C ₄ H ₁₀ O ₂	0.9	26	1.92
Methyl-tert-butyl aether	C ₅ H ₁₂ O	0.80	59	0.85
Methyl chloride	CH ₃ Cl	3.8	47	1.06
Methylen chlorid	CH ₂ Cl ₂	6.5	on request	_
Methyl ethyl ketone	C ₄ H ₈ O	0.75	22	2.27
n-Nonane	C9H ₂₀	0.35	on request	-
n-Octane	C8H ₁₈	0.40	20	2.50
n-Pentane	C5H ₁₂	0.55	36	1.39
Propane	C ₃ H ₈	0.85	50	1.00
n-Propylalcohol	C ₃ H ₇ OH	1.05	40	1.25
Propene	C ₃ H ₆	0.90	31	1.61
Propylene oxide	C ₃ H ₆ O	0.95	49	1.02
Toluene	C ₆ H ₅ CH ₃	0.50	19	2.63
o-Xylene	C ₆ H ₄ (CH ₃) ₂	0.5	11	4.55
-				

DrägerSensor[®] Dual IR EX/CO₂


D-1602-2010

4.5 Dräger PID sensors

Many flammable gases and vapors are toxic to humans long before they reach the lower explosion limit (LEL). For this reason, personal protection in the workplace ideally includes the additional measurement of ppm levels of volatile organic substances using a PID sensor.

The air is drawn into the measuring chamber through the gas inlet. In the chamber, a UV lamp produces photons, which ionize certain molecules within the flow of gas. A relatively high amount of energy is required to ionize the air's permanent gases such as noble gases, nitrogen, oxygen, carbon dioxide, and water vapor. For this reason, these gases do not interfere with the measurement of the harmful substances. Most of the organic substances recognized as dangerous (such as hydrocarbons) are ionized and subjected to the electrical field between the electrodes in the measuring chamber. The strength of the resulting current is directly proportional to the concentration of ionized molecules inside the chamber. This makes it possible to determine the concentration of harmful substance in the air.

Ionization energy and UV lamps

lonization energy is measured in electron volts (eV) and defines the amount of energy required to bring a molecule into the ionized (charged) state. Ionization energy is something specific to each material, like the boiling point and vapor pressure. For a substance to be ionized, its ionization energy must be lower than the photon energy from the lamp used in the PID. Common is the lamp type 10.6 eV lamp. This enables a PID to detect whole groups of harmful substances, while it can also be used to measure single substances if calibrated accordingly.

Calibration and response factors

Isobutylene is used to calibrate a PID, unless the actual substance being measured can be used. The relative sensitivity to other substances is then expressed in terms of response factors. If a substance is detected with greater sensitivity than isobutylene, then its response factor is less than one. Substances that are detected with less sensitivity than isobutylene have a response factor greater than one.

FOR EXAMPLE:

Substance	Ionization energy	Response factor
Benzene	9.25 eV	0.5
Cyclohexane	9.98 eV	1.3

DrägerSensor[®] Smart PID

Order no. 83 19 100

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	UV lamp
Dräger X-am 7000	yes	yes	1 years	> 1 year	10.6 eV

MARKET SEGMENTS

Chemical industry, painters, storage and use of fuels (e.g. gas stations)

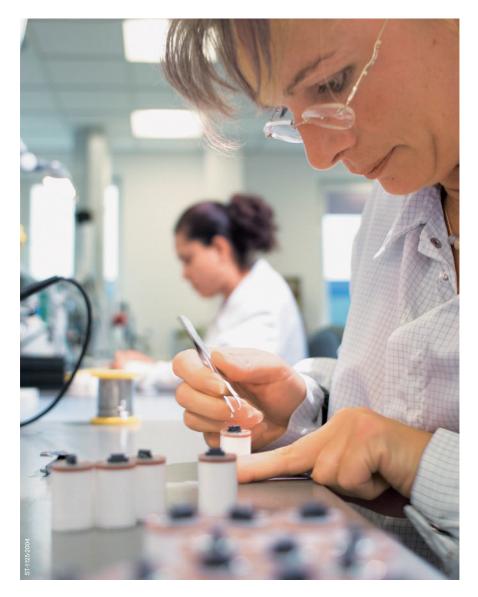
TECHNICAL SPECIFICATIONS

Detection limit:	2 ppm isobutylene
Resolution:	1 ppm up to 100 ppm
	2 ppm from 100 to 250 ppm
	5 ppm from 250 ppm upwards
Measurement range:	0 to 2,000 ppm isobutylene
General technical specifications	
Ambient conditions	
Temperature:	(-20 to 60)°C (-4 to 140)°F
Humidity:	(10 to 95)% RH
Pressure:	(700 to 1,300) hPa
Warm-up time:	4 minutes

FOR THE MEASUREMENT RANGE 1 TO 2,000 PPM WHEN CALIBRATED WITH ISOBUTYLENE IN AIR:

Response time:	Diffusion mode \leq 15 seconds (T ₂₀)
	Diffusion mode \leq 50 seconds (T ₉₀)
	Pump mode ≤ 10 seconds (T ₂₀)
	Pump mode \leq 25 seconds (T ₉₀)
Repeatability	
at 100 ppm isobutylene:	≤ ± 2 ppm isobutylene
Linearity error, typical:	$\leq \pm 5\%$ of measured value
Pressure effect	$\leq \pm 0.1\%$ of measured value/hPa
Effect of humidity, at 40°C (104 °F)	
(0 to 90% RH, non-condensing)	
Zero point:	≤ ± 0.06 ppm isobutylene/% RH
at 100 ppm isobutylene:	≤ ± 0.15 ppm isobutylene/% RH
Test gas:	approx. 100 ppm i-C ₄ H ₈ (isobutylene)
-	

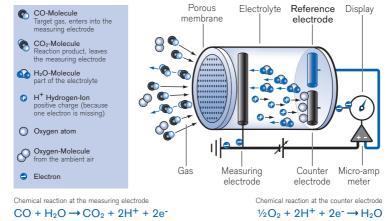
The PID can be used to detect numerous volatile organic compounds (VOCs). More than 20 of the VOCs most commonly used in industry are stored in its data memory. Other gases can be added to the memory on the customer's request.


GASES STORED IN THE MEMORY

Gas/vapor	CAS no.	Data set name	Measurement
			range
Acetone	67-64-1	ACTO	0–2,000 ppm
(-)-alpha-pinene	7785-26-4	aPIN	0–1,000 ppm
Benzene	71-43-2	BENZ	0–1,000 ppm
Chlorobenzene	108-90-7	CLBZ	0–1,500 ppm
Cyclohexane	110-82-7	CYHE	0–3,000 ppm
Ethyl acetate	141-78-6	ETAC	0–7,000 ppm
Ethylbenzene	100-41-4	ETBZ	0–1,500 ppm
Isobutylene	115-11-7	IBUT	0–2,000 ppm
Methyl bromide	74-83-9	MEBR	0-4,000 ppm
Methyl ethyl ketone	78-93-3	MEK	0–1,000 ppm
Methyl tert-butyl ether (MTBE)	1634-04-4	MTBE	0–2,000 ppm
n-nonane	111-84-2	NONA	0–3,000 ppm
n-octane	111-65-9	OCTA	0–5,000 ppm
Styrene	100-42-5	STYR	0–1,500 ppm
Toluene	108-88-3	TOLU	0–1,500 ppm
Trichloroethylene	79-01-6	TCE	0–1,500 ppm
Vinyl chloride	75-01-4	VC	0–3,000 ppm
Xylene	1330-20-7	XYLE	0–1,500 ppm
Diesel		DESL	0–2,000 ppm
Gasoline		GASO	0–2,000 ppm
Jet fuel		JP8	0–2,000 ppm

The standard gas is: Isobutylene - 0 to 2,000 ppm.

Other gases can be added to the memory on the customer's request.


4.6 Electrochemical sensors

Many toxic gases are highly reactive and can change their chemical composition under certain conditions. An electrochemical sensor is a micro-reactor, which produces a very small but measurable current when reactive gases are present. As in a normal household battery, this involves an electrochemical process, since the chemical transformation produces electrons.

The basic principle behind an electrochemical sensor involves at least two electrodes (a measuring electrode and a counter-electrode), which have contact with each other in two ways: first, through an electrically conductive medium (electrolyte, meaning a fluid that conducts ions) and, second, through an external electrical circuit (electron conductor). The electrodes are made of a special material that also has catalytic characteristics so that certain chemical reactions take place at what is known as the three-phase zone where gas, solid catalyzer, and liquid electrolyte meet. A dual-electrode sensor (measuring and counter-electrode) does, however, have many drawbacks. For instance, if high concentrations of gas occur, this leads to higher currents in the sensor and, therefore, to a drop in voltage. The drop in voltage, in turn, changes the preset sensor voltage. This can lead to unusable readings or, in the worst case, it can cause the chemical reaction inside the sensor to come to a halt during the measurement process.

For this reason, the Dräger XS and XXS sensors contain a third electrode known as the reference electrode, which does not have a current passing through it, and whose potential therefore remains constant. It continuously measures the sensor voltage at the measuring electrode, which can be corrected using the sensor's control enhancement. This produces a considerably improved measuring quality (e.g. in terms of linearity and selectivity) and a longer life time.

Electrochemical sensor

The Dräger XS sensors are known as "smart" sensors and contain their own EEPROM. This memory module contains all of the sensor's relevant data, which, when plugged into Dräger X-am 7000 is retrieved. The device then automatically adjusts itself to these figures (e.g. calibration figures, alarm level). This "plug & play" function enables sensors to be swapped between devices without performing operations such as a re-calibration. XXS sensors are used in the following devices: Dräger Pac 3500 to 7000 and Dräger X-am 2500/5000 and to 5600. In this case, the sensor-relevant data is stored in the device. When a sensor is changed, this information is transferred using a software application.

General Instructions for DrägerSensors[®] XS, XS R, XS 2 and XXS

1 Intended Use

For use in Dräger gas monitors in accordance with the Instructions for Use of the individual sensor.

2 Readiness for Operation of a new Sensor

The sensor has an internal data memory (EEPROM) which is evaluated by an appropriate Dräger gas monitor.

XS, XS R and XS 2:

New sensors are supplied with calibration data and certain default settings already stored in the data memory. The default settings, such as measuring range, alarm thresholds and calibration intervals can be adjusted by the user in some of the Dräger gas monitors. If a sensor is replaced by another of the same type (with the same order number), the new settings entered by the user are retained.

XXS:

Calibration should be carried out before using the sensor for the first time and when replacing the sensor.

3 Sensor Calibration / Adjustment

Calibration / adjustment interval:

Recommended interval see Instructions for Use of the sensor in use. For critical applications: perform a test of zero point and sensitivity with the sensor fitted in the Dräger gas monitor in accordance with local regulations.

Calibration / adjustment of zero point:

Apply zero gas (nitrogen or synthetic air) with a flow of 0.5 litres per minute to the sensor. Waiting time for measured value to stabilize = up to 3 minutes.

Checking zero point for O₂ sensors:

For test gas use pure nitrogen.

In order to prevent return diffusion: fit the second outlet socket of the calibration adapter with a piece of tubing of at least 10 cm length. 3 minutes following commencement of exposure, the measured value display must be lower than 0.6% O_2 by vol. for N_2 .

Calibration / adjustment of sensitivity:

Only use hoses made of polytetrafluoroethylene (PTFE) and fluoroelastomer (FKM). Keep tubing as short as possible, calibration gas may partly be adsorbed in the tubing. Regardless of the chosen measuring range use commercial calibration gas (see Instructions for Use of the respective sensor) with a concentration between 40% of the set full scale value and up to 100% of the highest adjustable full scale value. Calibration gas is available from gas suppliers. Apply calibration gas with a flow of 0.5 litres per minute to the sensor. Waiting time for measured value to stabilize = up to 5 minutes.

Calibration of sensitivity with test gas ampoules

The use of test gas ampoules can lead to an additional calibration error of up to $\pm 35\%$. Observe the "Instructions for Use" of the calibration bottle (order no. 68 03 407) and the respective test gas ampoules (see sensor data sheet). Approx. 3 minutes after shattering the ampoule: calibrate instrument.


4 Measurements with hose probe (pump operation)

Follow the information contained in the Dräger gas monitor instructions for use. Some gases may be adsorbed on surfaces. Only use approved hoses. For more information, please contact your local Dräger offices or e-mail: mmt.applic@draeger.com.

5 Replacing Selective Filter

To increase the selectivity of the sensors, some sensors are provided with a replaceable selective filter as standard (see Instructions for Use of the sensor in use). The following points should be observed when using the filter:

• Remove filter with a peaked object.

- Insert new filter.
- Due to changed sensitivity, the instrument must be calibrated whenever the selective filter is replaced.

All other properties of the sensor remain unaffected by the use of the filter. For service life of the filter see Instructions for Use of the respective sensor. How often the selective filter needs to be replaced depends on the amount and type of hazardous substances it is exposed to.

CONTENTS XS SENSORS

XS Sensors	Chemical name (synonym)	
XS EC Amine	amine like methylamíne, ethylamine,	128
	dimethylamine etc.	
XS EC Cl ₂	chlorine	130
XS EC CIO ₂	chlorine dioxide	132
XS EC CO	carbon monoxide	134
XS 2 CO	carbon monoxide	134
XS R CO	carbon monoxide	134
XS EC CO HC	carbon monoxide	138
XS EC CO ₂	carbon dioxide	140
XS EC COCl ₂	phosgene	142
XS EC H ₂	hydrogen	144
XS EC H ₂ HC	hydrogen	146
XS EC HCN	hydrogen cyanide	148
XS EC HF/HCI	hydrogen chloride / hydrogen fluoride	150
XS EC H ₂ S	hydrogen sulfide	152
XS 2 H ₂ S	hydrogen sulfide	152
XS R H₂S	hydrogen sulfide	152
XS EC H ₂ S HC	hydrogen sulfide	156
XS EC H ₂ O ₂	hydrogen peroxide	158
XS EC Hydrazine	hydrazine	160
XS EC Hydrazine D	hydrazine	162
XS EC Hydride	hydride like hydrogen phosphide, phosphine,	164
	arsine etc.	
XS EC NH ₃	ammonia	166
XS EC NO	nitrogen monoxide	168
XS EC NO ₂	nitrogen dioxide	170
XS EC Odorant	sulfur compounds like tetrahydrothiophene,	172
	methylmercapten, ethylmercaptan etc.	
XS EC OV	organic gases and vapors like ethylene oxide,	174
	ethene, propene etc.	
XS EC OV-A	organic gases and vapors like ethylene oxide,	176
	styrene isobutylene etc.	
XS EC O ₂ -LS	oxygen	178
XS 2 O ₂	oxygen	178
XS R O ₂	oxygen	178

XS Sensors	Chemical name (synonym)	
XS EC O2 100	oxygen	182
XS EC PH₃ HC	hydrogen phosphide, phosphine	184
XS EC SO ₂	sulfur dioxide	186

DrägerSensor[®] XS EC Amine

Order no. 68 09 545

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.5 years	-

MARKET SEGMENTS

Foundries, refineries, power plants

TECHNICAL SPECIFICATIO	NS			
Detection limit:	2 ppm			
Resolution:	- 1 ppm			
Measurement range/	0 to 100 ppm CH ₃ NH ₂ (methylamine)	0.70		
Relative sensitivity	0 to 100 ppm (CH ₃) ₂ NH (dimethylamine)	0.50		
	0 to 100 ppm (CH ₃) ₃ N (trimethylamine)	0.50		
	0 to 100 ppm C ₂ H ₅ NH ₂ (ethylamine)	0.70		
	0 to 100 ppm (C ₂ H ₅) ₂ NH (diethylamine)	0.50		
	0 to 100 ppm (C_2H_5) ₃ N (triethylamine)	0.50		
	0 to 100 ppm NH ₃ (ammonia)*	1.00		
Response time:	≤ 30 seconds (T ₅₀)			
Measurement accuracy				
Sensitivity:	$\leq \pm 3\%$ of measured value			
Long-term drift, at 20°C (68°F)	_			
Zero point:	$\leq \pm 2 \text{ ppm/month}$			
Sensitivity:	≤ ± 3% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions				
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 5 ppm			
Sensitivity:	$\leq \pm 5\%$ of measured value			
Influence of humidity				
Zero point:	≤ ± 0.1 ppm/% RH			
Sensitivity:	≤ ± 0.2% of measured value/% RH			
Test gas:	approx. 5 to 100 ppm NH ₃ , CH ₃ NH ₂ , (CH ₃) ₂ NH, (CH ₃) ₃ N,			
	C ₂ H ₅ NH ₂ , (C ₂ H ₅) ₂ NH, (C ₂ H ₅) ₃ N			

Six different amines can be detected using this sensor. It is sufficient to calibrate it using an ammonia test gas. By doing so, all of the other amines are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by ± 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of amine. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES Gas/vapor Chem. symbol Concentration Display in ppm NH₃ 1,000 ppm Acetone CH₃COCH₃ No effect ≤ 5(-) Carbon dioxide 1.5 Vol. % CO_2 Carbon monoxide CO 200 ppm No effect Chlorine ≤ 20(-) Cl₂ 10 ppm Ethene C₂H₄ 1,000 ppm ≤ 3 Ethine No effect C_2H_2 200 ppm ≤ 3 Hydrogen H₂ 1,000 ppm HCN ≤ 3 Hydrogen cyanide 25 ppm Hydrogen sulfide H₂S 20 ppm ≤ 50 Methane CH₄ 10 Vol. % No effect Methanol CH₃OH 200 ppm ≤ 3 ≤ 10(-) Nitrogen dioxide NO_2 20 ppm Nitrogen monoxide NO 20 ppm ≤ 10 PH₃ 5 ppm ≤ 8 Phosphine Sulfur dioxide SO₂ 20 ppm No effect

10 ppm

C₄H₈S

≤ 10

Tetrahydrothiophene

DrägerSensor[®] XS EC Cl₂

Order no. 68 09 165

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.5 years	-

MARKET SEGMENTS

Food and beverage, inorganic chemicals, manufacture of plastics, measuring hazardous material, pulp and paper, power generation, sewage plants water treatment.

TECHNICAE SI ECH ICATIO				
Detection limit:	0.1 ppm			
Resolution:	0.05 ppm			
Measurement range/	0 to 20 ppm Cl ₂ (chlorine) 1.00			
Relative sensitivity	0 to 20 ppm F ₂ (fluorine)	1.00		
	0 to 20 ppm Br ₂ (bromine)	1.00		
	0 to 20 ppm ClO ₂ (chlorine dioxide)	0.60		
Response time:	≤ 30 seconds (T ₉₀)			
Measurement accuracy				
Zero point:	≤ ± 0.05 ppm			
Sensitivity:	$\leq \pm 2\%$ of measured value			
Long-term drift, at 20°C (68°F)				
Sensitivity:	$\leq \pm 2\%$ of measured value/month			
Warm-up time:	≤ 1 hour			
Ambient conditions				
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.1 ppm			
Sensitivity:	$\leq \pm 5\%$ of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.4% of measured value/% RH			
Test gas:	approx. 2 to 20 ppm Cl_2 or one of the other target gases: F_2 , Br_2 ,			
	CIO ₂			

This sensor is suitable for monitoring concentrations of chlorine, bromine, fluorine, and chlorine dioxide in the ambient air. It is sufficient to calibrate the sensor using a chlorine test gas; by doing so, all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of chlorine. To be sure, please check if gas mixtures are present.

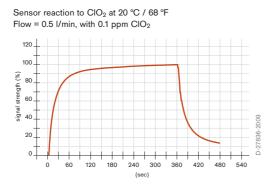
Gas/vapor	Chem. symbol	Concentration	Display in ppm Cl ₂
Ammonia	NH ₃	50 ppm	≤ 0.5 ⁽⁻⁾
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	CO	100 ppm	No effect
Ethene	C ₂ H ₄	1,000 ppm	No effect
Ethine	C_2H_2	200 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen cyanide	HCN	20 ppm	≤ 0.1
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.1(-)
i-propanol	(CH ₃) ₂ CHOH	1 Vol. %	No effect
Methane	CH ₄	4 Vol. %	No effect
Methanol	CH₃OH	500 ppm	≤ 0.3(-)
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.2
Nitrogen monoxide	NO	25 ppm	No effect
Phosphine	PH ₃	10 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 0.2
Tetrahydrothiophene	C ₄ H ₈ S	1,000 ppm	No effect

RELEVANT CROSS-SENSITIVITIES

DrägerSensor[®] XS EC ClO₂

Order no. 68 11 360

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	1 year	


MARKET SEGMENTS

Food and beverage, breweries, waste water treatment, swimming pools, industrial gases, pulp and paper.

Detection limit:	0.02 ppm		
Resolution:	0.01 ppm		
Measurement range:	0 to 20 ppm ClO ₂ (chlorine dioxide)		
Response time:	≤ 20 seconds (T ₅₀)		
Measurement accuracy			
Sensitivity:	$\leq \pm 5\%$ of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	_ ≤ ± 0.03 ppm/year		
Sensitivity:	$\leq \pm 2\%$ of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions	-		
Temperature:	(-20 to 50)°C (-4 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	≤ ± 0.02 ppm		
Sensitivity:	$\leq \pm 5\%$ of measured value		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.1% of measured value/% RH		
Test gas:	test gas 1 to 20 ppm ClO ₂		

The chlorine dioxide sensor is especially selective (see cross sensitivity table) and has a particularly low

cross sensitivity to chlorine.

The values given in the table are standard an apply to new sensors, The values maybe fluctuate be \pm 30%. The sensor may also be sensitive to other gases (for information contact Dräger).

Gas mixtures can be displayed as the sum of all components. Gases with negative sensitivity may displace a positive display of chlorine dioxide. A check should be carried out to see if mixtures of gases are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm ClO ₂
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	1 ppm	≤ 0.1
Hydrogen	H ₂	1,000 ppm	≤ 0.02
Hydrogen cyanide	HCN	10 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.5 ⁽⁻⁾
Methane	CH ₄	1 Vol. %	No effect
Methanol	CH ₃ OH	500 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 1
Nitrogen monoxide	NO	20 ppm	≤ 0.05
Ozone	O ₃	0.5 ppm	≤ 0.05
Sulfur dioxide	SO ₂	20 ppm	No effect

RELEVANT CROSS-SENSITIVITIES

DrägerSensor[®] XS EC CO DrägerSensor[®] XS 2 CO DrägerSensor[®] XS R CO

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 7000	yes	yes	XS EC: 3 years	> 5 years
			XS 2: 2 years	> 3 years
			XS R: 5 years	= 5 years
				(limited operation time)
Selective filter				

D3T, 68 09 022 - replaceable for XS EC + XS R

A2T, 68 10 378 - replaceable for XS-2

Cross sensitivity of alcohols and acid gases (H₂S, SO₂) are eleminated.

The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 5,000 ppm x hours / 10 ppm = 500 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Waste disposal, metal processing, petrochemicals, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	2 ppm for XS EC / XS 2 / XS R		
Resolution:	1 ppm		
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)		
Response time:	≤ 35 seconds T ₉₀) – XS EC		
	≤ 20 seconds (T ₉₀) – XS 2		
	\leq 30 seconds (T ₉₀) – XS R		
Measurement accuracy			
Sensitivity:	\leq ± 1% of measured value – XS EC / XS 2 / XS R		
Long-term drift, at 20°C (68°F)			
Zero point:	≤ ± 1 ppm/month – XS EC / XS 2		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 12 hours – XS EC / XS 2 / XS R		
Ambient conditions			
Temperature:	(-20 to 50) °C (-4 to 122) °F - XS EC		
	(-40 to 50) °C (-40 to 122) °F - XS 2 / XS R		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	- 		
Zero point:	≤ ± 5 ppm		
Sensitivity:	$\leq \pm 0.4\%$ of measured value/K		
Influence of humidity			
Zero point:	≤ ± 0.02 ppm/% RH – XS EC		
	No effect – XS 2 / XS R		
Sensitivity:	\leq ± 0.1% of measured value/% RH – XS EC / XS 2		
	\leq ± 0.05% of measured value/% RH – XS R		
Test gas:	approx. 10 to 2,000 ppm CO test gas		

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. Internal selective filters, some of which are replaceable, filter out the majority of accompanying gases such as alcohol and acidic gases like H_2S , SO_2 .

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of carbon monoxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 20	≤ 1
Ammonia	NH ₃	200 ppm	≤ 1	≤ 1
Carbon dioxide	CO ₂	30 Vol. %	≤ 35	≤ 35
Chlorine	Cl2	20 ppm	≤ 1(-)	≤ 1
Dichloromethane	CH ₂ CL ₂	1,000 ppm	≤ 1	≤ 1
Ethane	C ₂ H ₆	0.2 Vol. %	≤ 1	≤ 1
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400	≤ 1
Ethene	C ₂ H ₄	10 ppm	≤ 25	≤ 25
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	≤ 1
Ethine	C ₂ H2	200 ppm	≤ 500	≤ 300
Formaldehyde	НСНО	20 ppm	≤ 30	≤ 1
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	≤ 6	≤ 1
Hydrogen cyanide	HCN	50 ppm	≤ 10	≤ 1(-)
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	≤ 1
Methane	CH ₄	5 Vol. %	≤ 1	≤ 1
Methanol	CH ₃ OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	≤ 1	≤ 1
Nitrogen monoxide	NO	25 ppm	≤ 50	≤ 12
Phosgene	COCL ₂	50 ppm	≤ 1	≤ 1
Phosphine	PH ₃	5 ppm	≤ 20	≤ 3
Propane	C ₃ H ₈	1 Vol. %	≤ 1	≤ 1
Sulfur dioxide	SO ₂	25 ppm	≤ 25	≤ 1
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	≤ 1	≤ 1
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	≤ 1	≤ 1
Trichloroethylene	CHCICCI ₂	1,000 ppm	≤1	≤1

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC CO – 68 09 105

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R CO – 68 10 258

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 20	No effect
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect	No effect
Chlorine	Cl ₂	20 ppm	No effect	No effect
Dichloromethane	CH ₂ CL ₂	1,000 ppm	No effect	No effect
Ethane	C ₂ H ₆	0.2 Vol. %	No effect	No effect
Ethanol	C ₂ H ₆ OH	200 ppm	≤ 400	No effect
Ethene	C ₂ H ₄	10 ppm	≤ 25	≤ 25
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	No effect
Ethyne	C ₂ H ₂	200 ppm	≤ 500	≤ 300
Formaldehyde	НСНО	20 ppm	≤ 30	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	≤ 6	No effect
Hydrogen cyanide	HCN	50 ppm	≤ 10	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	No effect
Methane	CH ₄	5 Vol. %	No effect	No effect
Methanol	CH ₃ OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	25 ppm	≤ 50	≤ 6
Phosgene	COCL ₂	50 ppm	No effect	No effect
Phosphine	PH ₃	5 ppm	≤ 20	≤ 3
Propane	C ₃ H ₈	1 Vol. %	No effect	No effect
Sulfur dioxide	SO ₂	25 ppm	≤ 25	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	No effect
Toluene	C ₂ H ₅ CH ₃	1,000 ppm	No effect	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 CO - 68 10 365

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO without selective filter	Display in ppm CO with selective filter
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 20	No effect
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect	No effect
Chlorine	Cl ₂	20 ppm	No effect	No effect
Dichloromethane	CH_2CL_2	1,000 ppm	No effect	No effect
Ethane	C ₂ H6	0.2 Vol. %	No effect	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400	No effect
Ethene	C ₂ H ₄	50 ppm	≤ 25	≤ 10
Ethyl acetate	CH ₂ COOC ₂ H ₄	1,000 ppm	≤ 150	No effect
Ethine	C_2H_2	200 ppm	≤ 500	≤ 50
Formaldehyde	НСНО	20 ppm	≤ 30	No effect
Hydrogen	H ₂	0.1 Vol. %	≤ 90	≤ 90
Hydrogen chloride	HCI	40 ppm	≤ 6	No effect
Hydrogen cyanide	HCN	50 ppm	≤10	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 120	No effect
Methane	CH ₄	5 Vol. %	No effect	No effect
Methanol	CH ₃ OH	175 ppm	≤ 150	≤ 2
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	25 ppm	≤ 50	No effect
Phosgene	COCL ₂	50 ppm	No effect	No effect
Phosphine	PH ₃	5 ppm	≤ 20	No effect
Propane	C ₃ H ₈	1 Vol. %	No effect	No effect
Sulfur dioxide	SO ₂	25 ppm	≤ 25	No effect
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	No effect
Tetrahydrothiophene	C ₄ H ₈ S	5 ppm	No effect	No effect
Toluene	C ₂ H ₅ CH ₃	1,000 ppm	No effect	No effect
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	No effect

DrägerSensor[®] XS EC CO HC

Order no. 68 09 120

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 3 years	-

MARKET SEGMENTS

Waste disposal, metal processing, petrochemicals, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, hazmat, biogas.

Detection limit:	- 10 ppm		
Resolution:	5 ppm		
Measurement range:	0 to 10,000 ppm CO (carbon monoxide)		
Response time:	≤ 10 seconds (T ₉₀)		
Measurement accuracy	_		
Sensitivity:	$\leq \pm 1\%$ of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 2 ppm/month		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions	-		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	≤ ± 10 ppm		
Sensitivity:	≤ ± 0.3% of measured value/K		
Influence of humidity			
Zero point:	No effect		
Sensitivity:	≤ ± 0.05% of measured value/% RH		
Test gas:	50 to 10,000 ppm CO test gas		

Because of its excellent linearity, this sensor (measurement range 10,000 ppm) can be calibrated at the lower levels of its measurement range. It also offers very stable measurements, even at high concentrations and over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of carbon monoxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO	
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 30	
Ammonia	NH ₃	200 ppm	No effect	
Benzene	C ₆ H ₆	0.6 Vol. %	No effect	
Carbon dioxide	CO ₂	10 Vol. %	No effect	
Chlorine	Cl ₂	20 ppm	≤ 8(-)	
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 400	
Ethene	C ₂ H ₄	20 ppm	≤ 50	
Hydrogen	H ₂	0.1 Vol. %	≤ 400	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	≤ 10	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 80	
Methane	CH ₄	5 Vol. %	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	20 ppm	≤ 40	
Phosgene	COCl ₂	50 ppm	No effect	
Phosphine	PH ₃	5 ppm	≤ 20	
Sulfur dioxide	SO ₂	20 ppm	≤ 20	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 4	

RELEVANT CROSS-SENSITIVITIES

DrägerSensor® XS EC CO₂

Order no. 68 09 175

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.25 years	-

MARKET SEGMENTS

Waste disposal, Food and beverage, breweries, metal processing, petrochemicals, fertilizer production, sewage, police, customs and rescue services, mining and tunneling, shipping and transport, power generation.

Detection limit:	0.2 Vol. %			
Resolution:	0.1 Vol. %			
Measurement range:	0 to 5 Vol. % CO ₂ (carbon dioxide)			
Response time:	≤ 45 seconds (T ₉₀)			
Measurement accuracy	-			
Sensitivity:	≤ ± 20% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.1 Vol. %/month			
Sensitivity:	≤ ± 15% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions				
Temperature:	(-20 to 40)°C (-4 to 104)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.01 Vol. %/K			
Sensitivity:	$\leq \pm 2\%$ of measured value/K			
Influence of humidity	-			
Zero point:	≤ ± 0.005 Vol. %/% RH			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	approx. 0.5 to 4 Vol. % CO ₂ test gas			

This sensor is highly sensitive (see cross-sensitivity list) and offers an economical alternative to infrared sensors, if you need to warn against CO_2 concentrations in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of dioxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol Concentration		Display
Ammonia	NH ₃	50 ppm	≤ 0.1 ⁽⁻⁾
Boron trichloride	BCl ₃	15 ppm	No effect
Carbon monoxide	CO	100 ppm	No effect
Chlorine	Cl ₂	5 ppm	≤ 0.1 ⁽⁻⁾
Ethanol	C ₂ H ₅ OH	130 ppm	≤ 0.1(-)
Ethene	C ₂ H ₄	50 ppm	≤ 0.1(-)
Hydrogen	H ₂	1,000 ppm	≤ 0.1 ⁽⁻⁾
Hydrogen chloride	HCI	20 ppm	≤ 0.1(-)
Hydrogen phosphide	PH ₃	5 ppm	≤ 0.1(-)
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.1 ⁽⁻⁾
Methane	CH ₄	30 Vol. %	No effect
Methanol	CH₃OH	200 ppm	≤ 0.1(-)
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.1 ⁽⁻⁾
Nitrogen monoxide	NO	20 ppm	≤ 0.1(-)
Sulfur dioxide	SO ₂	20 ppm	≤ 0.1(-)

DrägerSensor[®] XS EC COCl₂

Order no. 68 08 582

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	6 months	> 1 year	

MARKET SEGMENTS

Production of plastics, insecticides production, dyes.

0.01 ppm	
0.01 ppm	
0 to 10 ppm COCl ₂ (phosgene)	
≤ 20 seconds (T ₂₀)	
\leq 40 seconds (T ₅₀)	
$\leq \pm 10\%$ of measured value	
≤ ± 0.01 ppm/month	
\leq ± 2% of measured value/month	
≤ 1 hour	
(-20 to 40)°C (-4 to 104)°F	
(10 to 90)% RH	
(700 to 1,300) hPa	
≤ ± 0.001 ppm/K	
≤ ± 1% of measured value/K	
No effect	
≤ ± 0.05% of measured value/% RH	
3 to 10 ppm COCl ₂	

The XS Phosgene sensor is highly selective, especially against hydrogen chloride (HCl).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of phosgene. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm COCl ₂	
Ammonia	NH ₃	20 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	CO	1,000 ppm	No effect	
Chlorine	Cl ₂	0.5 ppm	≤ 0.2	
Ethanol	C ₂ H ₅ OH	260 ppm	No effect	
Ethine	C_2H_2	20 ppm	No effect	
Hydrogen	H ₂	8,000 ppm	No effect	
Hydrogen chloride	HCI	0.5 ppm	≤ 0.7	
Hydrogen peroxide	H ₂ O ₂	1 ppm	No effect	
Hydrogen sulfide	H ₂ S	1 ppm	≤1	
Nitrogen dioxide	NO ₂	1 ppm	≤ 0.1(-)	
Nitrogen monoxide	NO	30 ppm	No effect	
Ozone	O ₃	0.3 ppm	≤ 0.05 ⁽⁻⁾	
Propanol	C ₃ H ₇ OH	500 ppm	No effect	
Sulfur dioxide	SO ₂	2 ppm	No effect	

DrägerSensor[®] XS EC H₂

Order no. 68 09 185

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	-

MARKET SEGMENTS

Chemical, petrochemical, rocket fuel, leakages, production of plastics, metal processing, industrial gases, fertilizer production

Detection limit:				
Resolution:	5 ppm			
Measurement range:	0 to 2,000 ppm H ₂ (hydrogen)			
Response time:	\leq 20 seconds (T ₉₀)			
Measurement accuracy	-			
Sensitivity:	\leq ± 1% of measured value			
Long-term drift, at 20°C (68°F)	-			
Zero point:	$\leq \pm 4 \text{ ppm/month}$			
Sensitivity:	\leq ± 4% of measured value/month			
Warm-up time:	≤ 1 hour			
Ambient conditions	-			
Temperature:	(–20 to 50)°C (–4 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature	-			
Zero point:	≤ ± 10 ppm			
Sensitivity:	≤±1ppm/K			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	\leq ± 0.15% of measured value/% RH			
Test gas:	approx. 200 to 1,800 ppm H_2 test gas			

This sensor enables ppm concentrations of H_2 (hydrogen) to be measured in the ambient air. It has a very fast response time and is therefore especially suited to detect leakages.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂	
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 10	
Ammonia	NH ₃	100 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	СО	100 ppm	≤ 130	
Chlorine	Cl ₂	5 ppm	≤ 5(-)	
Ethene	C ₂ H ₄	1,000 ppm	≤ 1800	
Ethine	C ₂ H ₂	200 ppm	≤ 700	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	20 ppm	≤ 20	
Methane	CH4	50 Vol. %	No effect	
Methanol	CH₃OH	500 ppm	≤ 750	
Nitrogen dioxide	NO ₂	20 ppm	≤ 15(-)	
Nitrogen monoxide	NO	20 ppm	≤ 10	
Phosgene	COCl ₂	50 ppm	No effect	
Phosphine	PH ₃	10 ppm	≤ 40	
Sulfur dioxide	SO ₂	20 ppm	≤ 15	
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 10	

DrägerSensor[®] XS EC H₂ HC

Order no. 68 11 365

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	-

MARKET SEGMENTS

Ammonia synthesis, fuel refinement (hydrocracking), sulfur elimination, chemical, rocket fuel, leakage inspection, metal processing, industrial gases, fertilizer production, battery chargers, fuel cells.

Detection limit:	0.02 Vol. %
Resolution:	0.01 Vol. %
Measurement range:	0 to 4 Vol. % H ₂ (hydrogen)
Response time:	≤ 20 seconds (T ₅₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 2\%$ of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.05 Vol. %/year
Sensitivity:	≤ ± 3% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	-
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 0.05 Vol. %
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	\leq ± 0.1% of measured value/% RH
Test gas:	0.2 to 4 Vol. % H ₂ test gas

This sensor covers the entire range of LELs up to 4 Vol. % H₂, and is therefore the ideal addition when using IR technology in the Dräger X-am 7000 to measure for explosion risks. The sensor also offers high selectivity (see cross-sensitivity specifications) and linearity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % H ₂	
Ammonia	NH ₃	500 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	CO	1,000 ppm	≤ 0.1	
Chlorine	Cl ₂	50 ppm	No effect	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethylene	C ₂ H ₄	1,000 ppm	≤ 0.1	
Ethine	C ₂ H ₂	200 ppm	≤ 0.02	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.1	
Methane	CH ₄	1 Vol. %	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	20 ppm	≤ 0.05	
Phosphine	PH ₃	5 ppm	≤ 0.02	
Sulfur dioxide	SO ₂	20 ppm	No effect	

DrägerSensor[®] XS EC HCN

Order no. 68 09 150

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.5 years	-

MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical war agent (blood agents).

Detection limit:	0.5 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 50 ppm HCN (hydrogen cyanide)
Response time:	≤ 10 seconds (T ₅₀)
Measurement accuracy	-
Sensitivity:	$\leq \pm 5\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	$\leq \pm 1 \text{ ppm/month}$
Sensitivity:	$\leq \pm 5\%$ of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 1 ppm
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.1% of measured value/% RH
Test gas:	3 to 50 ppm HCN
	After long periods of exposure > 10 ppm HCN/hour, the sensor
	should be recalibrated.
	-

The extremely quick response time of this sensor provides a fast and reliable warning against prussic acid (hydrogen cyanide).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrogen cyanide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCN	
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect	
Ammonia	NH ₃	200 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon monoxide	CO	1,000 ppm	≤ 0.5	
Chlorine	Cl ₂	10 ppm	≤ 10(-)	
Ethene	C ₂ H ₄	1,000 ppm	No effect	
Ethylene oxide	C ₂ H ₄ O	30 ppm	No effect	
Ethine	C_2H_2	200 ppm	≤ 20	
Formaldehyde	НСНО	50 ppm	≤ 2	
Hydrogen	H ₂	1.6 Vol. %	≤ 10	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 5	
i-propanol	(CH ₃) ₂ CHOH	500 ppm	No effect	
Methane	CH ₄	20 Vol. %	No effect	
Methanol	CH ₃ OH	175 ppm	No effect	
Nitrogen dioxide	NO ₂	10 ppm	≤ 10(-)	
Nitrogen monoxide	NO	20 ppm	≤ 0.5	
Phosphine	PH ₃	5 ppm	≤ 25	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Sulfur dioxide	SO ₂	20 ppm	≤ 10	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 0.5	

DrägerSensor[®] XS EC HF/HCI

Order no. 68 09 140

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 1.5 years	-

MARKET SEGMENTS

Semiconductor, chemical

TECHNICAL SPECIFICATIONS

Detection limit:	1 ppm		
Resolution:	0.1 ppm		
Measurement range/	0 to 30 ppm HCI (hydrogen chloride)	1.00	
relative sensitivity	0 to 30 ppm HNO ₃ (nitric acid)	1.00	
	0 to 30 ppm HBr (hydrogen bromide)	1.00	
	0 to 30 ppm POCl ₃ (phosphoryl trichloride)	1.00	
	0 to 30 ppm PCl ₃ (phosphorous trichloride)	3.00	
	0 to 30 ppm HF (hydrogen fluoride)	0.66	
Response time:	\leq 60 seconds (T ₅₀)		
Measurement accuracy	_		
Sensitivity:	≤ ± 15% of measured value		
Long-term drift, at 20°C (68°F)	_		
Zero point:	≤ ± 0.5 ppm/month		
Sensitivity:	≤ ± 5% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions	-		
Temperature:	(-20 to 40)°C (-4 to 104)°F		
Humidity:	(30 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	≤ ± 0.5 ppm		
Sensitivity:	$\leq \pm 10\%$ of measured value		
Influence of humidity	-		
Zero point:	No effect		
Sensitivity:	\leq ± 2% of measured value/% RH		
Test gas:	HCl test gas between 3 to 30 ppm; or one of	the other target gases	
	HNO ₃ , HBr, POCl ₃ ,PCl ₃ , HF. Every time the sensor is used, the		
	following function test should be performed b	peforehand. Procedure:	
	hold the unit over a container containing a (9 ± 0.5) mol of acetic acid,		
	at room temperature. Evaluation: after 30 secon	nds, the figure displayed	
	should be greater than 0.5 ppm HCl. If the figu	ire is less than 0.5 ppm,	
	then the sensitivity must be calibrated. A fur	nction test can also be	

performed using the test gas.

This sensor is used exclusively in the Dräger X-am 5100. This sensor can be used to monitor concentrations of hydrogen chloride (HCl), nitric acid (HNO₃), hydrogen bromide (HBr), phosphoryl trichloride (POCl₃), phosphorous trichloride (PCl₃) and HF (hydrogen fluoride) in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCI/HF. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCl
Ammonia*	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	CO	150 ppm	No effect
Chlorine	Cl ₂	5 ppm	≤ 22
Hydrogen	H ₂	1.5 Vol. %	No effect
Hydrogen cyanide	HCN	20 ppm	≤ 9
Hydrogen peroxide	H_2O_2	20 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	≤ 2
i-propanol	(CH ₃) ₂ CHOH	500 ppm	No effect
Methane	CH ₄	2 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 0.8
Nitrogen monoxide	NO	20 ppm	≤ 5
Sulfur dioxide	SO ₂	20 ppm	≤ 20

DrägerSensor[®] XS EC H₂S DrägerSensor[®] XS 2 H₂S DrägerSensor[®] XS R H₂S

Order no. 68 09 110

68 10 370

68 10 260

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	XS EC: 3 years XS 2: 2 years XS R: 5 years	 > 5 years > 3 years = 5 years (limited operation) 	- time)

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

TECHNICAL SPECIFICATIONS

Detection limit:	1 ppm for XS EC / XS 2 / XS R			
Resolution:	0.1 ppm for XS EC / XS 2 / XS R			
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)			
Response time:	≤ 20 seconds (T ₉₀) - XS R			
	≤ 25 seconds (T ₉₀) - XS EC			
	≤ 30 seconds (T ₉₀) - XS 2			
Measurement accuracy				
Sensitivity:	≤ ± 2% of measured value - XS EC / XS R			
	\leq ± 1% of measured value - XS 2			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 1 ppm/year - XS EC / XS R			
	≤ ± 1 ppm/month - XS 2			
Sensitivity:	≤ ± 1% of measured value/month			
Warm-up time:	≤ 12 hours - XS EC / XS 2 / XS R			
Ambient conditions				
Temperature*:	(-20 to 50)°C (-4 to 122)°F - XS EC			
	(-40 to 50)°C (-40 to 122)°F - XS 2 / XS R			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 5 ppm - XS EC / ≤ ± 2 ppm - XS 2 / XS R			
Sensitivity:	\leq ± 5% of measured value - XS EC / XS 2 / XS R			
Influence of humidity				
Zero point:	≤ ± 0.02 ppm/% RH - XS EC / XS 2, no effect - XS R			
Sensitivity:	≤ ± 0.05% of measured value/% RH - XS EC / XS 2 / XS R			
Test gas:	approx. 5 to 100 ppm H ₂ S test gas			

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

These sensor's advantages include fast response times and excellent linearity. At concentrations up to 20 ppm, sulfur dioxide only has a minor effect on hydrogen sulfide readings. This, therefore, enables the selective measurement of hydrogen sulfide alongside sulfur dioxide.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

Gas/vapor Chem. symbol Concentration Display in ppm H₂S Acetone CH₃COCH₃ 1,000 ppm ≤ 4 Ammonia NH₃ 500 ppm ≤1 Benzene C₆H₆ 0.6 Vol. % ≤ 1 Carbon dioxide ≤ 1(-) CO_2 1.5 Vol. % Carbon disulfide CS_2 ≤ 1 15 ppm Carbon monoxide CO 125 ppm ≤ 3 Chlorine Cl₂ 20 ppm ≤ 2(-) Dimethyldisulfide CH₃SSCH₃ ≤ 13 20 ppm Dimethylsulfide (CH₃)₂S ≤ 6 20 ppm Fthanol C₂H₅OH 200 ppm ≤ 2 Ethanethiol C₂H₅SH ≤ 5 20 ppm Ethene C_2H_4 1,000 ppm ≤ 10 Ethine C_2H_2 0.6 Vol. % ≤ 10 FAM regular gasoline 0.55 Vol. % ≤ 1 (DIN 51635, DIN 51557) 0.6 Vol. % Hexane C_6H_{14} ≤ 1 Hydrogen H_2 1 Vol. % ≤ 10 HCI Hydrogen chloride 40 ppm ≤ 1 Hydrogen cyanide HCN ≤ 1 50 ppm CH₄ Methane 5 Vol. % ≤1 Methanol CH₃OH ≤ 10 200 ppm Methylmercaptane CH₃SH 20 ppm ≤ 15 Nitrogen dioxide NO₂ 20 ppm ≤1 ≤ 10 Nitrogen monoxide NO 20 ppm Octane C8H18 0.4 Vol. % ≤ 1 PH₃ Phosphine 5 ppm ≤ 5 Propane C₃H₈ 1 Vol. % ≤ 1 Propene C₃H₆ 0.5 Vol. % ≤ 1 Sulfur dioxide SO_2 20 ppm ≤ 4 sec-Butylmercaptan C₄H₁₀SH 20 ppm ≤ 7 ppm ≤ 4 Tetrahydrothiophene C₄H₅S 20 ppm Toluene 0.6 Vol. % ≤ 1 C₂H₅CH₃ tert-Butylmercaptane (CH₃)₃CSH 20 ppm ≤ 10 ppm Trichloroethylene CHCICCl₂ 1,000 ppm ≤1 Xylol $C_6H_4(CH_3)_2$ 0.5 Vol. % ≤ 4

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC H₂S

(-) Indicates negative deviation

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 H₂S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetone	CH ₃ COCH ₃	1,000 ppm	≤4
Ammonia	NH ₃	500 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon disulfide	CS ₂	15 ppm	No effect
Carbon monoxide	CO	125 ppm	≤3
Chlorine	Cl ₂	20 ppm	≤2(-)
Ethane	C ₂ H ₆	0.2 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	200 ppm	≤2
Ethanethiol	C_2H_5SH	10 ppm	≤5
Ethene	C ₂ H ₄	1,000 ppm	≤10
Ethine	C ₂ H ₂	0.6 Vol. %	≤10
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect
Hydrogen	H ₂	1 Vol. %	≤10
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH₃OH	200 ppm	≤10
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤10
Phosgene	COCL ₂	50 ppm	No effect
Phosphine	PH₃	5 ppm	≤5
Propane	C ₃ H ₈	1 Vol. %	No effect
Sulfur dioxide	SO ₂	20 ppm	≤4
Tetrahydrothiophene	C ₄ H ₅ S	10 ppm	≤4
Toluene	C ₂ H ₅ CH ₃	0.6 Vol. %	No effect
Xylene	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤4

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R H₂S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S	
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 4	
Ammonia	NH ₃	500 ppm	No effect	
Benzene	C ₆ H ₆	0.6 Vol. %	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon disulfide	CS ₂	15 ppm	No effect	
Carbon monoxide	CO	125 ppm	No effect	
Chlorine	Cl ₂	8 ppm	≤ 2(-)	
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2	
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤ 5	
Ethene	C ₂ H ₄	1,000 ppm	≤ 10	
Ethine	C ₂ H ₂	0.6 Vol. %	≤ 10	
FAM regular gasoline	-	0.55 Vol. %	No effect	
(DIN 51635, DIN 51557)				
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect	
Hydrogen	H ₂	1 Vol. %	≤ 10	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Methane	CH ₄	5 Vol. %	No effect	
Methanol	CH₃OH	200 ppm	≤ 10	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	20 ppm	≤ 10	
Octane	C ₈ H ₁₈	0.4 Vol. %	No effect	
Phosgene	COCl ₂	50 ppm	No effect	
Phosphine	PH ₃	5 ppm	≤ 5	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Propene	C ₃ H ₆	0.5 Vol. %	No effect	
Sulfur dioxide	SO ₂	20 ppm	≤ 4	
Tetrahydrothiophene	C ₄ H ₅ S	10 ppm	≤ 4	
Toluene	$C_2H_5CH_3$	0.6 Vol. %	No effect	
Xylene	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4	

DrägerSensor[®] XS EC H₂S HC

Order no. 68 09 180

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 3 years	-

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.

TECHNICAL SPECIFICATIONS

Detection limit:	5 ppm			
Resolution:	1 ppm			
Measurement range:	0 to 1,000 ppm H ₂ S (hydrogen sulfide)			
Response time:	≤ 20 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	$\leq \pm 5\%$ of measured value			
Long-term drift, at 20°C (68°F)	-			
Zero point:	≤ ± 3 ppm/month			
Sensitivity:	≤ ± 3% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions				
Temperature*:	(-40 to 50)°C (-40 to 122)°F			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 5 ppm			
Sensitivity:	$\leq \pm 5\%$ of measured value			
Influence of humidity				
Zero point:	≤ ± 0.1 ppm/% RH			
Sensitivity:	\leq ± 0.1% of measured value/% RH			
Test gas:	20 to 1,000 ppm H ₂ S test gas			

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

Because of its excellent linearity, this sensor can be calibrated in its lower measurement range using a hydrogen sulfide test gas without compromising on accuracy in its upper measurement range. It also offers a fast response time and good selectivity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S	
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 4	
Ammonia	NH ₃	500 ppm	No effect	
Benzene	C ₆ H ₆	0.6 Vol. %	No effect	
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	
Carbon disulfide	CS ₂	15 ppm	No effect	
Carbon monoxide	СО	125 ppm	≤ 3	
Chlorine	Cl ₂	8 ppm	≤ 2 ^(−)	
Ethanol	C ₂ H ₅ OH	200 ppm	≤ 2	
Ethanethiol	C ₂ H ₅ SH	10 ppm	≤ 5	
Ethene	C ₂ H ₄	1,000 ppm	≤ 10	
Ethine	C ₂ H ₂	0.6 Vol. %	≤ 10	
FAM regular gasoline	-	0.55 Vol. %	No effect	
(DIN 51635, DIN 51557)				
Hexane	C ₆ H ₁₄	0.6 Vol. %	No effect	
Hydrogen	H ₂	0.1 Vol. %	≤ 10	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Methane	CH ₄	5 Vol. %	No effect	
Methanol	CH ₃ OH	500 ppm	≤ 20	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	20 ppm	≤ 10	
Octane	C ₈ H ₁₈	0.4 Vol. %	No effect	
Phosgene	COCl ₂	50 ppm	No effect	
Phosphine	PH ₃	5 ppm	≤ 5	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Propene	C ₃ H ₆	0.5 Vol. %	No effect	
Sulfur dioxide	SO ₂	20 ppm	≤ 4	
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 2	
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	No effect	
Xylol	C ₆ H ₄ (CH ₃) ₂	0.5 Vol. %	≤ 4	
(-) Indicates negative deviation				

RELEVANT CROSS-SENSITIVITIES

(-) Indicates negative deviation

DrägerSensor[®] XS EC H₂O₂

Order no. 68 09 170

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5100	no	yes	1 year	> 2 years	

MARKET SEGMENTS

Disinfection and sterilization, bleaching, decontaminating interior spaces.

Detection limit:	0.1 ppm			
Resolution:	0.1 ppm			
Measurement range:	0 to 20 ppm H ₂ O ₂ (hydrogen peroxide)			
Response time:	≤ 60 seconds (T ₉₀)			
Measurement accuracy	-			
Sensitivity:	$\leq \pm 10\%$ of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤±1 ppm/year			
Sensitivity:	≤ ± 2% of measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions	-			
Temperature:	(0 to 50)°C (32 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature	-			
Zero point:	≤ ± 1 ppm			
Sensitivity:	≤ ± 0.5% of measured value/K			
Influence of humidity	-			
Zero point:	≤ ± 0.01 ppm/% RH			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	H ₂ O ₂ test gas between 1 to 10 ppm			
	Alternatively, the sensor can be calibrated using SO_2 test gas			
	(10 ppm). But a higher measurement uncertainty must be expected.			

This sensor is used in the Dräger X-am 5100 to monitor the H_2O_2 (hydrogen peroxide) concentration in the ambient air. It offers high sensitivity (see cross-sensitivity table).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂O₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ O ₂
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	СО	125 ppm	No effect
Chlorine	Cl ₂	5 ppm	≤ 1(-)
Ethene	C_2H_4	50 ppm	No effect
Ethine	C ₂ H ₂	200 ppm	≤ 35
Hydrogen	H ₂	1.5 Vol. %	≤ 5
Hydrogen chloride	HCI	15 ppm	≤ 3
Hydrogen cyanide	HCN	25 ppm	≤ 7
Hydrogen sulfide	H ₂ S	20 ppm	≤ 80
i-propanol	(CH ₃)CHOH	500 ppm	No effect
Methane	CH ₄	5 Vol. %	No effect
Methanol	CH₃OH	200 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 15(-)
Nitrogen monoxide	NO	20 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 15
Sulfur dioxide	SO ₂	20 ppm	≤ 12
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5

DrägerSensor[®] XS EC Hydrazine

Order no. 68 09 190

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5100	no	yes	1 year	> 1 year	-

MARKET SEGMENTS

Rocket fuel, aircraft fuel (e.g. F-16), fuel for emergency power generators, for electrochemical power generation in secondary cells or in alkaline fuel cells, especially in space travel, submarines, and other military equipment.

TECHNICAL SPECIFICATION	NS	
Detection limit:	0.01 ppm	
Resolution:	0.01 ppm	
Measurement range:	0 to 5 ppm N ₂ H ₄ (hydrazine)	
	0 to 5 ppm CH ₃ NH-NH ₂ (methyl hydrazine)	
	0 to 5 ppm (CH ₃) ₂ N-NH ₂ (dimethylhydrazine)	
Response time:	≤ 180 seconds (T ₉₀)	
Measurement accuracy		
Sensitivity:	$\leq \pm 5\%$ of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 0.01 ppm/month	
Sensitivity:	≤ ± 5% of measured value/month	
Warm-up time:	 ≤ 1 hour	
Ambient conditions		
Temperature:	(-20 to 50)°C (-4 to 122)°F	
Humidity:	(15 to 95)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	No effect	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	\leq ± 0.1% of measured value/% RH	
Test gas:	0.1 to 3 ppm N ₂ H ₄ , CH ₃ NH-NH ₂ , (CH ₃) ₂ N-NH ₂	

This sensor is used exclusively in the Dräger X-am 5100 for monitoring concentrations of hydrazine (N_2H_4) , methyl hydrazine $(CH_3)NH-NH_2$, and dimethylhydrazine $((CH_3)_2N-NH_2)$.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrazine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm N ₂ H ₄
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Ammonia	NH ₃	250 ppm	≤ 2.5
Carbon dioxide	CO ₂	100 Vol. %	No effect
Carbon monoxide	СО	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 0.1(-)
Ethanol	C ₂ H ₅ OH	130 ppm	No effect
Ethene	C ₂ H ₄	20 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	≤ 0.25
i-propanol	(CH ₃) ₂ CHOH	1,000 ppm	No effect
Methane	CH ₄	3 Vol. %	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 0,05
Nitrogen monoxide	NO	25 ppm	≤ 0.05
Propane	C ₃ H ₈	1.5 Vol. %	No effect
Sulfur dioxide	SO ₂	10 ppm	No effect

DrägerSensor® XS EC Hydrazine D Order no. 68 10 295

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Pac III S / E*	yes	yes	6 months	6 months	-

MARKET SEGMENTS

Rocket fuel, aircraft fuel (e.g. F-16), fuel for emergency power generators, for electrochemical power generation in secondary cells or in alkaline fuel cells, especially in space travel, submarines, and other military equipment.

TECHNICAL SPECIFICATION	IS			
Detection limit:	0.01 ppm			
Resolution:	0.01 ppm			
Measurement range:	0 to 5 ppm N ₂ H ₄ (hydrazine)			
	0 to 5 ppm CH ₃ NH-NH ₂ (methyl hydrazine)			
	0 to 5 ppm (CH ₃) ₂ N-NH ₂ (dimethylhydrazine)			
Response time:	≤ 180 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	\leq ± 20% of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	$\leq \pm 0.01 \text{ ppm/month}$			
Sensitivity:	\leq ± 20% of measured value/6 months			
Warm-up time:	≤ 1 hour			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 122)°F			
Humidity:	(15 to 95)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	No effect			
Sensitivity:	\leq ± 5% of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	≤ ± 0.1% of measured value/% RH			
Test gas:	0.1 to 3 ppm N ₂ H ₄ , CH ₃ NH-NH ₂ , (CH ₃) ₂ N-NH ₂			

*The DrägerSensor XS EC Hydrazine D can be ordered as a replacement sensor for the Dräger Pac III S/E.

The Dräger Pac III will no longer be sold at the end of 2011. The DrägerSensor XS EC Hydrazine used in combination with the Dräger X-am 5100 can then be used to monitor hydrazine concentrations.

This sensor is used exclusively in the Dräger Pac III for monitoring concentrations of hydrazine (N₂H₄), methyl hydrazine (CH₃NH-NH₂), and dimethylhydrazine ((CH₃)₂N-NH₂). Hydrazines tend to be adsorbed by surfaces, which means a special sensor cap should be used (order no. 68 09 541). This sensor does not have to be recalibrated during its limited life span.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydrazine. To be sure, please check if gas mixtures are present.

Gas/vapor Chem. symbol Concentration Display in ppm N₂H₄ Acetone CH₃COCH₃ 1,000 ppm No effect Ammonia NH₃ 250 ppm ≤ 2.5 Carbon dioxide CO₂ 100 Vol. % No effect Carbon monoxide СО No effect 1,000 ppm ≤ 0.1(-) Chlorine Cl_2 10 ppm Ethanol C₂H₅OH 130 ppm No effect Ethene C_2H_4 20 ppm No effect Hydrogen H_2 1,000 ppm No effect ≤ 0.25 Hydrogen sulfide H₂S 20 ppm i-propanol (CH₃)₂CHOH 1,000 ppm No effect No effect Methane CH₄ 3 Vol. % Nitrogen dioxide NO₂ 20 ppm ≤ 0.05 NO ≤ 0.05 Nitrogen monoxide 25 ppm Propane C₃H₈ 1.5 Vol. % No effect Sulfur dioxide SO₂ 10 ppm No effect

DrägerSensor[®] XS EC Hydride

Order no. 68 09 135

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 3 years	-
				> 1 year for B₂H ₆ and GeH₄	

MARKET SEGMENTS

Inorganic chemicals, industry, fumigation, pre entry measurement.

Detection limit:	0.02 ppm			
Resolution:	0.01 ppm			
Measurement range:	0 to 20 ppm PH ₃ (hydrogen phosphide) 1.00			
	0 to 20 ppm AsH ₃ (arsine)	0.85		
	0 to 1 ppm B ₂ H ₆ (diborane)	0.40		
	0 to 20 ppm GeH ₄ (germanium tetrahydride)	0.95		
	0 to 50 ppm SiH ₄ (silane)	0.95		
	0 to 50 ppm H ₂ Se (hydrogen selenide)*	0.40		
Response time:	\leq 10 seconds (T ₉₀) for PH ₃ , B ₂ H ₆ , SiH ₄			
	≤ 20 seconds (T ₉₀) for AsH ₃ , GeH ₄			
Measurement accuracy				
Sensitivity:	$\leq \pm 2\%$ of measured value			
Long-term drift, at 20°C (68°F)	-			
Zero point:	≤ ± 0.02 ppm/month			
Sensitivity:	\leq ± 2% of measured value/month for PH ₃ , AsH ₃			
	$\leq \pm$ 3% of measured value/month for SiH ₄			
	$\leq \pm$ 5% of measured value/month for B ₂ H ₆ , GeH ₄			
Warm-up time:	≤ 15 minutes			
Ambient conditions				
Temperature:	(-20 to 50)°C (-4 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.02 ppm			
Sensitivity:	\leq ± 5% of measured value			
Influence of humidity				
Zero point:	≤ ± 0.02 ppm			
Sensitivity:	\leq ± 0.05% of measured value/% RH			
Test gas:	0.2 to 20 ppm PH ₃ , AsH ₃ or GeH ₄			
	0.2 to 50 ppm SiH ₄			
	0.1 to 1 ppm B ₂ H ₆			

This sensor can be used to monitor the concentration of PH_3 (hydrogen phosphide), AsH_3 (arsine), B_2H_6 (diborane), GeH_4 (germanium tetrahydride) or SiH_4 (silane) in the ambient air. It is sufficient to calibrate the sensor using a PH_3 test gas; by doing so all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of hydride. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Ammonia	NH ₃	250 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect
Carbon monoxide	СО	150 ppm	≤ 0.1
Chlorine	Cl ₂	10 ppm	≤ 2(-)
Ethene	C ₂ H ₄	1,000 ppm	≤ 0,2
Ethine	C ₂ H ₂	200 ppm	≤ 12
Formaldehyde	НСНО	50 ppm	≤ 0.15
Hydrogen	H ₂	1,000 ppm	≤ 0.25
Hydrogen cyanide	HCN	50 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
i-propanol	(CH ₃) ₂ CHOH	1 Vol. %	No effect
Methane	CH ₄	4 Vol. %	No effect
Methanol	CH ₃ OH	200 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	20 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 2

DrägerSensor® XS EC NH₃

Order no. 68 09 145

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	-

MARKET SEGMENTS

Food and beverage, poultry farming, power generation, inorganic chemicals, fertilizer production, analysis of chemical war agents, hazmat, fumigation, metal processing, petrochemicals, pulp and paper.

TECHNICAL SPECIFICATIONS

Detection limit:	3 ppm		
Resolution:	1 ppm		
Measurement range:	0 to 300 ppm NH ₃ (ammonia)		
Response time:	_ ≤ 20 seconds (T ₅₀)		
Measurement accuracy	-		
Sensitivity:	$\leq \pm 3\%$ of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 2 ppm/month		
Sensitivity:	≤ ± 2% of measured value/month		
Warm-up time:	≤ 12 hours		
Ambient conditions	-		
Temperature*:	(-40 to 50)°C (-40 to 122)°F		
Humidity*:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 5 ppm		
Sensitivity:	≤ ± 5% of measured value		
Influence of humidity	• •		
Zero point:	≤ ± 0.1 ppm/% RH		
Sensitivity:	≤ ± 0.2% of measured value/% RH		
Test gas:	approx. 10 to 150 ppm NH ₃		

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

The quick response time of this sensor provides a fast and reliable warning against ammonia.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH₃. To be sure, please check if gas mixtures are present.

RELEVANT	CROSS-SEN	SITIVITIES
----------	-----------	------------

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	≤ 5(-)
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 20 ⁽⁻⁾
Ethene	C ₂ H ₄	1,000 ppm	≤ 3
Ethine	C ₂ H ₂	200 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 3
Hydrogen cyanide	HCN	25 ppm	≤ 3
Hydrogen sulfide	H ₂ S	20 ppm	≤ 50
Methane	CH4	10 Vol. %	No effect
Methanol	CH₃OH	200 ppm	≤ 3
Nitrogen dioxide	NO ₂	20 ppm	≤ 10(-)
Nitrogen monoxide	NO	20 ppm	≤ 10
Phosphine	PH ₃	5 ppm	≤ 8
Sulfur dioxide	SO ₂	20 ppm	No effect
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 10

DrägerSensor[®] XS EC NO

Order no. 68 09 125

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	-

MARKET SEGMENTS

Power plants, district heating plants

Detection limit:	1 ppm				
Resolution:	0.5 ppm				
Measurement range:	0 to 200 ppm NO (nitrogen monoxide)				
Response time:	≤ 30 seconds (T ₉₀)				
Measurement accuracy					
Sensitivity:	≤ ± 3% of measured value				
Long-term drift, at 20°C (68°F)	-				
Zero point:	≤ ± 1 ppm/month				
Sensitivity:	≤ ± 3% of measured value/month				
Warm-up time:	≤ 18 hours				
Ambient conditions	-				
Temperature:	(-40 to 50)°C (-40 to 122)°F				
Humidity:	(10 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature	-				
Zero point:	≤ ± 0.01 ppm/K				
Sensitivity:	≤ ± 0.2% of measured value/K				
Influence of humidity	-				
Zero point:	≤ ± 0.01 ppm/% RH				
Sensitivity:	≤ ± 0.05% of measured value/% RH				
Test gas:	approx. 1 to 200 ppm NO test gas				

This sensor enables a selective measurement of NO. It also offers a very fast response time and excellent linearity across its entire measurement range.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO. To be sure, please check if gas mixtures are present.

Acetone			Display in ppm NO No effect	
10010110	CH ₃ COCH ₃	1,000 ppm		
Ammonia NH ₃		500 ppm	No effect	
Benzene	C ₆ H ₆	0.6 Vol. %	No effect	
Carbon dioxide	CO ₂	5 Vol. %	No effect	
Carbon monoxide	CO	2,000 ppm	No effect	
Chlorine	Cl ₂	5 ppm	No effect	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethene	C ₂ H ₄	0.1 Vol. %	No effect	
Ethine	C_2H_2	0.8 Vol. %	≤ 2	
Hydrogen	H ₂	5 Vol. %	≤ 2	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	5 ppm	≤ 5	
Methane	CH ₄	2 Vol. %	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Phosphine	PH ₃	2 ppm	≤ 2	
Propane	C ₃ H ₈	1 Vol. %	No effect	
Sulfur dioxide	SO ₂	10 ppm	≤ 2	
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	
Toluene	C ₆ H ₅ CH ₃	0.6 Vol. %	No effect	
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	

DrägerSensor® XS EC NO₂

Order no. 68 09 155

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	-

MARKET SEGMENTS

Inorganic chemicals, metal processing, oil and gas, petrochemicals, steel, shipping, rocket engineering, mining and tunneling.

Detection limit:	0.5 ppm				
Resolution:	0.1 ppm				
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)				
Response time:	_ ≤ 15 seconds (T ₉₀)				
Measurement accuracy	-				
Sensitivity:	$\leq \pm 2\%$ of measured value				
Long-term drift, at 20°C (68°F)					
Zero point:	≤ ± 1 ppm/month				
Sensitivity:	\leq ± 2% of measured value/month				
Warm-up time:	≤ 15 minutes				
Ambient conditions					
Temperature:	(-40 to 50)°C (-40 to 122)°F				
Humidity:	(10 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature	-				
Zero point:	≤ ± 1 ppm				
Sensitivity:	$\leq \pm$ 5% of measured value				
Influence of humidity					
Zero point:	No effect				
Sensitivity:	≤ ± 0.2% of measured value/% RH				
Test gas:	approx. 1 to 50 ppm NO ₂ test gas				

This sensor offers a fast response time and stable readings, even after experiencing high concentrations of nitrogen dioxide.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO ₂
Acetaldehyde CH ₃ CHO		500 ppm	No effect
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	2.5 Vol. %	No effect
Carbon monoxide	CO	125 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 10
Ethene	C ₂ H ₄	1,000 ppm	≤ 1 ⁽⁻⁾
Ethine	C ₂ H ₂	200 ppm	≤ 60(-)
Formaldehyde	НСНО	50 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 2 ⁽⁻⁾
Hydrogen cyanide	HCN	50 ppm	≤ 10(-)
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100 ⁽⁻⁾ No effect
Methane	CH4	5 Vol. %	
Methanol	CH₃OH	175 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 25 ⁽⁻⁾
Sulfur dioxide	SO ₂	50 ppm	≤ 50(-)
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5(-)
retranyorotniophene	04080		> 0(-)

DrägerSensor® XS EC Odorant

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 7000	yes	yes	1 year	> 2 years

Selective filter

B2T, 68 09 198 - replaceable

Cross sensitivities from acidic gases (H₂S, SO₂) are largely eliminated.

The filter's service life can be calculated as follows: 40 ppm x hours of contaminant gas. Example: Given constant concentration of 1 ppm H_2S will be: Service life = 40 ppm x hours / 1 ppm = 40 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Gas supply companies

TECHNICAL SPECIFICATIONS

Detection limit:	1 ppm				
Resolution:	0.5 ppm				
Measurement range	0 to 40 ppm C ₄ H ₈ S (tetrahydrothiophene)	1.00			
relative sensitivity	0 to 40 ppm (CH ₃) ₃ CSH (t-butyl mercaptan)				
	0 to 40 ppm C ₂ H ₅ CH(CH ₃)SH (sec-butyl mercaptan) 1.60				
	0 to 40 ppm CH ₃ SH (methyl mercaptan) 2.0				
	0 to 40 ppm C_2H_5SH (ethyl mercaptan)	1.50			
	0 to 100 ppm (CH ₃) ₂ S (dimethyl sulfide)	1.20			
	0 to 40 ppm CH ₃ SSCH ₃ (dimethyl disulfide)	0.33			
Response time:	\leq 90 seconds (T ₉₀)				
Measurement accuracy	_				
Sensitivity:	≤ ± 5% of measured value				
Long-term drift, at 20°C (68°F)	_				
Zero point:	$\leq \pm 1 \text{ ppm/month}$				
Sensitivity:	≤ ± 3% of measured value/month				
Warm-up time:	≤ 12 hours				
Ambient conditions	_				
Temperature*:	(-20 to 50)°C (-4 to 122)°F for THT, TBM, SBM				
	(5 to 40)°C (32 to 104)°F for MeM, EtM, DMS, DMDS				
Humidity*:	(0 to 90)% RH				
Pressure:	(700 to 1,300) hPa				
Influence of temperature	- 				
Zero point:	≤±1ppm				
Sensitivity:	≤ ± 5% of measured value				
Influence of humidity					
Zero point:	≤ ± 0.01 ppm/% RH				
Sensitivity:	≤ ± 0.1% of measured value/% RH				
Test gas:	$\overline{2}$ to 20 ppm THT or of one of the other target gases: (CH ₃) ₃ CSH,				
	C ₂ H ₅ CH(CH ₃)SH, CH ₃ SH, C ₂ H ₅ SH, (CH ₃) ₂ S, CH ₃ SSC	CH3			

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

This sensor can be used to monitor seven different odorants in the ambient air or (for short periods) in natural gas. It is sufficient to calibrate the sensor using a THT test gas. By doing so, all of the other target gases are then automatically calibrated.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of THT. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm THT without selective filter	Display in ppm THT with selective filter
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 3	≤ 3
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	1.5 Vol. %	No effect	No effect
Carbon monoxide	СО	125 ppm	≤ 3	≤ 3
Chlorine	Cl ₂	8 ppm	≤ 3(-)	No effect
Ethene	C ₂ H ₄	50 ppm	No effect	No effect
Hydrogen	H ₂	1,000 ppm	≤ 2	≤ 2
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤ 30	No effect
Methane	CH ₄	100 Vol. %	No effect	No effect
Methanol	CH ₃ OH	175 ppm	≤ 8	≤ 8
Nitrogen dioxide	NO ₂	20 ppm	≤ 2	≤ 2
Nitrogen monoxide	NO	20 ppm	≤ 30	≤ 30
n-propyl mercaptan	C ₃ H ₇ SH	6 ppm	≤ 4	≤ 4
Phosphine	PH ₃	5 ppm	≤ 15	≤ 15
Sulfur dioxide	SO ₂	20 ppm	≤ 15	No effect

DrägerSensor[®] XS EC OV

Order no. 68 09 115

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	-

MARKET SEGMENTS

Production of plastics, painter, chemical industry, disinfection, pest control.

Detection limit:	 1 ppm					
Resolution:	0.5 ppm					
Measurement range/	0 to 200 ppm C ₂ H ₄ O (ethylene oxide) 1.00					
relative sensitivity	0 to 200 ppm C_3H_6O (propylene oxide) 0.80					
	0 to 100 ppm C ₂ H ₄ (ethene) 1.10					
	0 to 100 ppm C ₃ H ₆ (propene) 0.70					
	0 to 100 ppm C ₂ H ₃ Cl (vinyl chloride) 0.80					
	0 to 200 ppm CH ₃ OH (methanol) 1.20					
	0 to 300 ppm C ₂ H ₅ OH (ethanol) 0.60					
	0 to 200 ppm CH ₃ CHO (acetaldehyde) 0.30					
	0 to 100 ppm CH ₂ CHCHCH ₂ (butadiene) 1.20					
	0 to 100 ppm HCHO (formaldehyde) 1.00					
	0 to 100 ppm CH ₃ COOC ₂ H ₃ (vinyl acetate) 0.80					
	0 to 300 ppm (H ₃ C) ₂ CHOH (isopropanol) 0.30					
Response time:	\leq 90 seconds (T ₅₀)					
Measurement accuracy						
Sensitivity:	≤ ± 5% of measured value					
Long-term drift, at 20°C (68°F)						
Zero point:	$\leq \pm 2 \text{ ppm/month}$					
Sensitivity:	≤ ± 5% of measured value/month					
Warm-up time:	≤ 18 hours					
Ambient conditions						
Temperature:	(-20 to 50)°C (-4 to 122)°F					
Humidity:	(10 to 90)% RH					
Pressure:	(700 to 1,300) hPa					
Influence of temperature						
Zero point:	≤ ± 0.1 ppm/K at (−20 to 40)°C (−4 to 104)°F					
Zero point:	≤ ± 1 ppm/K at (40 to 50)°C (104 to 122)°F					
Sensitivity:	\leq ± 1% of measured value/K					
Influence of humidity						
Zero point:	No effect					
Sensitivity:	\leq ± 0.2% of measured value/% RH					
Test gas:	5 to 100 ppm C ₂ H ₄ , C ₃ H6, C ₂ H ₃ Cl, CH ₂ CHCHCH ₂ , HCHO,					
	CH ₃ COOC ₂ H ₃					
	5 to 200 ppm C ₂ H ₄ O, C ₃ H ₆ O, CH ₃ OH					
	10 to 200 ppm CH ₃ CHO					
	20 to 300 ppm C ₂ H ₅ OH, (H ₃ C) ₂ CHOH					

This sensor is especially suited to detect leakages of numerous organic gases and vapors. Although it does not detect as broad a spectrum of gases as a PID, it has the key advantage of being almost completely insensitive to moisture. It also does not need to be calibrated every day, having instead a six-month calibration interval typical of electrochemical sensors. Furthermore, for the majority of gases it is enough to calibrate it using ethylene oxide, whereby all other gases are automatically calibrated as well. The exceptions are ethyne, tetrahydrofuran, and diethyl ether, which have to be calibrated using the target gas.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O
Acetic acid	CH₃COOH	100 ppm	No effect
Acetone	Acetone CH ₃ COCH ₃		≤ 15
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	СО	100 ppm	≤ 56
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethyl disulfide	(CH ₃) ₂ S ₂	50 ppm	≤ 65
Dimethyl sulfide	(CH ₃) ₂ S	50 ppm	≤ 40
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethane	C ₂ H ₆	0.2 Vol. %	No effect
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Gasoline, F 50	-	700 ppm	≤ 20
Gasoline,	-	0.5 Vol. %	≤ 3
FAM regular gasoline			
Gasoline, premium unleaded	-	700 ppm	≤ 70
Hydrogen	H ₂	5,000 ppm	≤ 50
Hydrogen chloride	HCI	40 ppm	≤ 10
Hydrogen cyanide	HCN	20 ppm	≤ 20
Hydrogen sulfide	H ₂ S	10 ppm	≤ 20
Methane	CH ₄	2 Vol. %	No effect
Methanethiol	CH ₃ SH	50 ppm	≤ 75
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO ₂	50 ppm	≤ 5
Nitrogen monoxide	NO	25 ppm	≤ 25
Phenol	C ₆ H ₅ OH	30 ppm	≤ 6
Phosgene	COCl ₂	50 ppm	No effect
Propane	C ₃ H ₈	1 Vol. %	≤ 3
Sulfur dioxide	SO ₂	10 ppm	≤ 4
Tetrachloroethylene	CCl ₂ CCl ₂	100 ppm	No effect
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	No effect
Trichloroethylene	CHCICCl ₂	1,000 ppm	No effect
Xylol	C ₆ H ₄ (CH ₃) ₂	0.2 Vol. %	No effect

RELEVANT CROSS-SENSITIVITIES

This sensor is not suitable for monitoring the limit values of ethylene oxide, propylene oxide, butadiene, formaldehyde, vinyl acetate or vinyl chloride.

DrägerSensor[®] XS EC OV-A

Order no. 68 09 522

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	> 2 years	-

MARKET SEGMENTS

Production of plastics, disinfection, painter, chemical industry.

Detection limit:	- 5 ppm		
Resolution:	0.5 ppm		
Measurement range/	0 to 100 ppm C ₂ H ₄ O (ethylene oxide)		
relative sensitivity	0 to 100 ppm H ₂ CCHCN (acrylonitrile) 0.10		
	0 to 100 ppm C ₆ H ₅ CHCH ₂ (styrene) 0.50		
	0 to 100 ppm H ₂ CC(CH ₃)COOCH ₃ (methyl methacrylate)	0.30	
	0 to 300 ppm (CH ₃) ₂ CCH ₂ (isobutylene)	0.70	
	0 to 100 ppm C ₂ H ₃ OCH ₂ Cl (epichlorohydrin)	0.45	
Response time:	\leq 90 seconds (T ₅₀) for EO, But, CIPO		
	\leq 300 seconds (T ₅₀) for ACN, MMA, Styr		
Measurement accuracy	-		
Sensitivity:	$\leq \pm 20\%$ of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	$\leq \pm 2 \text{ ppm/month}$		
Sensitivity:	≤ ± 10% of measured value/month		
Warm-up time:	≤ 18 hours		
Ambient conditions	- 		
Temperature:	(-20 to 55)°C (-4 to 131)°F for EO, But, Styr, CIPO		
	(5 to 40)°C (41 to 104)°F for ACN, MMA		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature			
Zero point:	≤ ± 0.2 ppm/K		
Sensitivity:	$\leq \pm 1\%$ of measured value/K		
Influence of humidity	_		
Zero point:			
Sensitivity:	≤ ± 0.2% of measured value/% RH		
Test gas:	10 to 100 ppm H ₂ CCHCN, C ₆ H ₅ CHCH ₂ , H ₂ CC(CH ₃)COOCH ₃ ,		
	C ₂ H ₃ OCH ₂		
	20 to 300 ppm (CH ₃) ₂ CCH ₂		

The DrägerSensor® XS OV-A has the same excellent insensitivity to moisture that the other Dräger-Sensor® XS OVs have, but it has also been optimized for other organic gases and vapors. Target gas calibration is required for all gases. Because of the absorption effects of the gases it measures, dust filters cannot be used.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O
Acetic acid	CH ₃ COOH	100 ppm	No effect
Acetone	CH ₃ COCH ₃	1,000 ppm	≤ 15
Ammonia	NH ₃	100 ppm	No effect
Benzene	C ₆ H ₆	2,000 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	CO	30 ppm	≤ 15
Chlorine	Cl ₂	10 ppm	No effect
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect
Dimethyl disulfide	(CH ₃) ₂ S ₂	50 ppm	≤ 65
Dimethyl sulfide	(CH ₃) ₂ S	50 ppm	≤ 40
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect
Gasoline, F 50	-	700 ppm	≤ 20
Hydrogen	H ₂	5,000 ppm	≤ 50
Hydrogen chloride	HCI	40 ppm	≤ 10
Hydrogen cyanide	HCN	20 ppm	≤ 20
Hydrogen sulfide	H ₂ S	10 ppm	≤ 20
Methane	CH ₄	2 Vol. %	No effect
Methanethiol	CH₃SH	50 ppm	≤ 75
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect
Nitrogen dioxide	NO ₂	50 ppm	≤ 5
Nitrogen monoxide	NO	25 ppm	≤ 25
Phenol	C ₆ H ₅ OH	30 ppm	≤ 6
Phosgene	COCl ₂	50 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 4
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect

DrägerSensor[®] XS EC O₂-LS DrägerSensor[®] XS 2 O₂ DrägerSensor[®] XS R O₂

Order no. 68 09 130 68 10 375 68 10 262

Used in	Plug & Play	Replaceable	Guaranty*	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	XS EC: 3 years	> 5 years	-
			XS 2: 2 years	> 3 years	
			XS R: 5 years	= 5 years	
				(limited operation	on time)

MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, measuring hazmat, industrial gases.

LOUNDAE OF FOULDAILO	10	
Detection limit:	0.1 Vol. %	
Resolution:	0.1 Vol. %	
Measurement range:	0 to 25 Vol. % O ₂ (oxygen)	
Response time:	\leq 25 seconds (T ₉₀) – XS EC	
	\leq 20 seconds (T ₉₀) – XS 2 / XS R	
Measurement accuracy	-	
Sensitivity:	$\leq \pm 1\%$ of measured value	
Long-term drift, at 20°C (68°F)	-	
Zero point:	≤ ± 0.5 Vol. %/year	
Sensitivity:	≤ ± 1% of measured value/month	
Warm-up time:	≤ 1 hour	
Ambient conditions	-	
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature	-	
Zero point:	≤ ± 0.4 Vol. % XS EC	
	≤ ± 0.2 Vol. % XS 2 / XS R	
Sensitivity:	≤ ± 2% of measured value XS EC	
	\leq ± 1% of measured value XS R / XS 2	
Influence of humidity	-	
Zero point:	≤ ± 0.002 Vol. %/% RH – XS EC	
	No effect – XS 2 / XS R	
Sensitivity:	≤ ± 0.1% of measured value/% RH	
Test gas:	N ₂ (zero gas)	
	11.5 to 23.0 Vol. % O ₂	
	-	

DrägerSensor[®] XS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have a much longer life spans than sensors that are consuming.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O₂. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS EC O₂ LS

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Chlorine	Cl ₂	20 ppm	No effect
Carbon dioxide	CO ₂	5 Vol. %	No effect
Carbon monoxide	CO	0.5 Vol. %	≤ 0.3(-)
Ethane	C ₂ H ₆	5 Vol. %	No effect
Ethanol	C ₂ H ₅ OH	1 Vol. %	≤ 0.2(-)
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5(-)
Ethine	C ₂ H ₂	0.5 Vol. %	≤ 0.2 ⁽⁻⁾
Hydrogen	H ₂	1 Vol. %	≤ 1.6 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	100 ppm	No effect
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS 2 O2

Gas/vapor	Chem. symbol	Concentration	Display in Vol. % O ₂
Chlorine	Cl ₂	20 ppm	No effect
Carbon dioxide	CO ₂	5 Vol. %	No effect
Carbon monoxide	СО	0.5 Vol. %	≤ 0.3(-)
Ethane	C ₂ H ₆	5 Vol. %	No effect
Ethanol	C₂H₅OH	1 Vol. %	≤ 0.2(-)
Ethene	C ₂ H ₄	2 Vol. %	≤ 0.5 ⁽⁻⁾
Ethyne	C_2H_2	0.5 Vol. %	≤ 0.2(-)
Hydrogen	H ₂	1 Vol. %	≤ 1.6 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	100 ppm	No effect
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

RELEVANT CROSS-SENSITIVITIES DrägerSensor® XS R O2

Chem. symbol	Concentration	Display in Vol. % O ₂
Cl ₂	20 ppm	No effect
CO ₂	5 Vol. %	No effect
CO	0.5 Vol. %	≤ 0.3 ⁽⁻⁾
C ₂ H ₆	5 Vol. %	No effect
C ₂ H ₅ OH	1 Vol. %	≤ 0.2(-)
C ₂ H ₄	2 Vol. %	≤ 0.5 ⁽⁻⁾
C ₂ H ₂	0.5 Vol. %	≤ 0.2(-)
HCI	40 ppm	No effect
H ₂ S	100 ppm	No effect
CH ₄	10 Vol. %	No effect
NO ₂	50 ppm	No effect
NO	100 ppm	No effect
C ₃ H ₈	2 Vol. %	No effect
SO ₂	50 ppm	No effect
	$\begin{array}{c} Cl_2 \\ CO_2 \\ CO_2 \\ CO \\ C_2H_6 \\ C_2H_5OH \\ C_2H_4 \\ C_2H_2 \\ HCl \\ H_2S \\ CH_4 \\ NO_2 \\ NO \\ NO \\ C_3H_8 \end{array}$	$\begin{tabular}{ c c c c c } \hline Cl_2 & 20 \ ppm \\ \hline CO_2 & 5 \ Vol. \ \% \\ \hline CO_2 & 5 \ Vol. \ \% \\ \hline CO_2 & 5 \ Vol. \ \% \\ \hline C_2H_6 & 5 \ Vol. \ \% \\ \hline C_2H_5OH & 1 \ Vol. \ \% \\ \hline C_2H_4 & 2 \ Vol. \ \% \\ \hline C_2H_4 & 2 \ Vol. \ \% \\ \hline C_2H_2 & 0.5 \ Vol. \ \% \\ \hline HCl & 40 \ ppm \\ \hline H_2S & 100 \ ppm \\ \hline H_2S & 100 \ ppm \\ \hline CH_4 & 10 \ Vol. \ \% \\ \hline NO_2 & 50 \ ppm \\ \hline NO & 100 \ ppm \\ \hline C_3H_8 & 2 \ Vol. \ \% \\ \hline \end{tabular}$

DrägerSensor[®] XS O₂

DrägerSensor[®] XS EC O₂ 100

Order no. 68 09 550

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	3 years	

MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, hazmat, industrial gases.

Detection limit:	0.5 Vol. %
Resolution:	0.5 Vol. %
Measurement range:	0 to 100 Vol. % O ₂ (oxygen)
Response time:	\leq 5 seconds (T ₉₀)
Measurement accuracy	_
Sensitivity:	$\leq \pm 1\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 0.5 Vol. %/year
Sensitivity:	≤ ± 3% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	_
Temperature:	(0 to 45)°C (32 to 133)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,100) hPa
Influence of temperature	-
Zero point:	No effect
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	\leq ± 0.01% of measured value/% RH
Test gas:	N2 (zero gas)
	10 to 100 Vol. % O ₂

This sensor can be used for measuring oxygen concentrations of up to 100 Vol. % O₂ in the ambient air. The principle upon which the sensor is based is the measurement of the partial oxygen pressure, which means it can also measure oxygen in inert gases like nitrogen, argon, and helium.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in Vol. %O ₂
Carbon dioxide	CO ₂	5 Vol. %	≤ 1 ⁽⁻⁾
Chlorine	Cl ₂	20 ppm	No effect
Helium	He	50 Vol. %	≤ 1(-)
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect
Methane	CH ₄	10 Vol. %	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	0.05 Vol. %	≤ 1(-)
Propane	C ₃ H ₈	2 Vol. %	No effect
Sulfur dioxide	SO ₂	50 ppm	No effect

DrägerSensor[®] XS EC PH₃ HC

Order no. 68 09 535

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	yes	yes	1 year	3 years	

MARKET SEGMENTS

Inorganic chemicals, industry, fumigation, pre entry measurements.

Detection limit:	2 ppm			
Resolution:	1 ppm			
Measurement range:	0 to 1,000 ppm PH ₃ (phosphine)			
Response time:	≤ 10 seconds (T ₉₀)			
Measurement accuracy	-			
Sensitivity:	$\leq \pm 3\%$ of measured value			
Long-term drift, at 20°C (68°F)	-			
Zero point:	≤ ± 1 ppm/month			
Sensitivity:	≤ ± 3% of measured value/month			
Warm-up time:	≤ 15 minutes			
Ambient conditions	-			
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature	-			
Zero point:	No effect			
Sensitivity:	$\leq \pm 5\%$ of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	\leq ± 0.05% of measured value/% RH			
Test gas:	approx. 4 to 1,000 ppm PH ₃			

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower levels of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of phosphine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃
Acetone	CH ₃ COCH ₃	1.25 Vol. %	No effect
Ammonia	NH ₃	50 ppm	No effect
Arsine	AsH ₃	5 ppm	≤ 4
Carbon dioxide	CO ₂	10 Vol. %	No effect
Carbon monoxide	CO	300 ppm	No effect
Chlorine	Cl ₂	5 ppm	No effect
Diborane	B ₂ H ₆	5 ppm	≤ 3
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethene	C ₂ H ₄	200 ppm	No effect
Germanium tetrahydride	GeH ₄	5 ppm	≤ 5
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	No effect
Hydrogen cyanide	HCN	25 ppm	≤ 2
Hydrogen selenide	H ₂ Se	5 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
i-propanol	(CH ₃)CHOH	1 Vol. %	No effect
Methane	CH ₄	4 Vol. %	No effect
Methanol	CH ₃ OH	200 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)
Nitrogen monoxide	NO	20 ppm	No effect
Silane	SiH ₄	5 ppm	≤ 5
Sulfur dioxide	SO ₂	10 ppm	≤ 2
Toluene	C ₆ H ₅ CH ₃	1 Vol. %	No effect
Trimethylboron	B(CH ₃) ₃	1 ppm	No effect

DrägerSensor[®] XS EC SO₂

Order no. 68 09 160

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 7000	yes	yes	1 year	> 2 years

Selective filter

K1T, 68 09 163 - replaceable

Eliminates cross-sensitivity to hydrogen sulfide (H₂S).

The filter's service life can be calculated as follows: 2,000 ppm x hours of contaminant gas. Example: Given constant concentration of 1 ppm H_2S will be: Service life = 2,000 ppm x hours / 1 ppm = 2,000 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Food industry, pest control, mining, oil and gas, petrochemicals, pulp and paper, shipping, steel

Detection limit:	0.5 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 100 ppm SO ₂ (sulfur dioxide)
Response time:	\leq 20 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	\leq ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 1 ppm/month
Sensitivity:	\leq ± 2% of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 1 ppm
Sensitivity:	\leq ± 5% of measured value
Influence of humidity	
Zero point:	≤ ± 0.002 ppm/% RH
Sensitivity:	\leq ± 0.2% of measured value/% RH
Test gas:	approx. 1 to 100 ppm SO ₂ test gas

In addition to a fast response time and excellent linearity, this sensor is highly selective if the selective filter is used. The K1T selective filter (order no. 68 09 163) is an accessory for the DrägerSensor® XS EC SO₂ and eliminates the sensor's cross-sensitivity to hydrogen sulfide. The filter has a lifetime of 2,000 ppm × hours, which means that at a hydrogen sulfide concentration of 1 ppm it can be used for 2,000 hours.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of SO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm SO ₂
			without selective filter
Acetaldehyde	CH ₃ CHO	500 ppm	No effect
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	30 Vol. %	No effect
Carbon monoxide	CO	125 ppm	No effect
Chlorine	Cl ₂	5 ppm	≤ 5 ⁽⁻⁾
Ethene	C ₂ H ₄	50 ppm	No effect
Ethine	C_2H_2	200 ppm	≤ 60
Formaldehyde	НСНО	50 ppm	≤1
Hydrogen cyanide	HCN	20 ppm	≤ 10
Hydrogen	H ₂	1,000 ppm	≤ 2
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100
Methane	CH ₄	2 Vol. %	No effect
Methanol	CH₃OH	175 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 20 ⁽⁻⁾
Nitrogen monoxide	NO	20 ppm	No effect
Phosphine	PH ₃	5 ppm	≤ 50
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤ 5

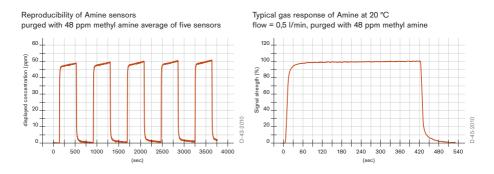
CONTENTS XXS SENSORS

DrägerSensor [®] XXS	Chemical name (synonym)	
XXS Amine	amine like methylamíne, ethylamine,	190
	dimethylamine etc.	
XXS Cl ₂	chlorine	192
XXS CO	carbon monoxide	194
XXS E CO	carbon monoxide	194
XXS CO LC	carbon monoxide	198
XXS CO HC	carbon monoxide	200
XXS CO H ₂ -CP	carbon monoxide / hydrogen	202
XXS CO ₂	carbon dioxide	204
XXS COCl ₂	phosgene	206
XXS H ₂	hydrogen	208
XXS H ₂ HC	hydrogen	210
XXS HCN	hydrogen cyanide	212
XXS HCN PC	hydrogen cyanide	214
XXS H ₂ S	hydrogen sulfide	216
XXS E H₂S	hydrogen sulfide	216
XXS H ₂ S HC	hydrogen sulfide	220
XXS H ₂ S LC	hydrogen sulfide	222
XXS H ₂ S / CO	hydrogen sulfide / carbon monoxide	224
XXS H ₂ S LC / CO LC	hydrogen sulfide / carbon monoxide	226
XXS NH ₃	ammonia	228
XXS NO	nitrogen monoxide	230
XXS NO ₂	nitrogen dioxide	232
XXS NO ₂ LC	nitrogen dioxide	234
XXS OV	organic gases and vapors like ethylene oxide,	236
	ethene, propene etc.	
XXS OV-A	organic gases and vapors like ethylene oxide,	240
	styrene isobutylene etc.	
XXS O ₂	oxygen	244
XXS E O ₂	oxygen	244
XXS O ₂ / CO LC	oxygen / carbon monoxide	248
XXS O ₂ 100	oxygen	250
XXS Odorant	sulfur compounds like tetrahydrothiophene,	252
	methylmercapten, ethylmercaptan etc.	

XXS Ozone	Ozone	254
XXS PH ₃	hydrogen phosphide, arsine, diborane, silane	256
XXS PH₃ HC	hydrogen phosphide	258
XXS SO ₂	sulfur dioxide	260

DrägerSensor® XXS Amine

Order no. 68 12 545


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 7000	no	yes	1 year	> 1.5 years	no
Dräger X-am 5600	no	yes	1 year	> 1.5 years	no

MARKET SEGMENTS

Foundries, refineries, power plants

Detection limit:	2 ppm	
Resolution:		
Measurement range/	0 - 100 ppm CH ₃ NH ₂ (methylamine)	0.70
relative sensitivity	0 - 100 ppm (CH ₃) ₂ NH (dimethylamine)	0.50
	0 - 100 ppm (CH ₃) ₃ N (trimethylamine)	0.50
	0 - 100 ppm C ₂ H ₅ NH ₂ (ethylamine)	0.70
	0 - 100 ppm (C ₂ H ₅) ₂ NH (diethylamine)	0.50
	0 - 100 ppm (C ₂ H ₅) ₃ N (triethylamine)	0.50
	0 – 100 ppm NH ₃ (ammonia)	1.00
Response time:	≤ 30 seconds (T ₉₀)	
Measurement accuracy		
Sensitivity:	$\leq \pm 5$ % of measured value	
Long-term drift, at 20°C (68°F)		
Zero point:	≤ ± 2 ppm/month	
Sensitivity:	\leq ± 3 % of measured value/month	
Warm-up time:	≤ 12 hours	
Ambient conditions		
Temperature:	(-40 to 50)°C (-40 to 122)°F	
Humidity:	(10 to 90) % RH.	
Pressure:	(700 to 1300) hPa	
Influence of temperature		
Zero point:	≤ ± 5 ppm	
Sensitivity:	$\leq \pm 5$ % of measured value	
Influence of humidity		
Zero point:	≤ ± 0.1 ppm / % RH	
Sensitivity:	\leq ± 0.2 % of measured value/% RH	
Test gas:	approx. 5 to 90 ppm NH ₃	

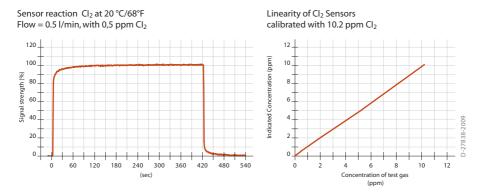
This sensor is suitable for monitoring concentration of six different amines in ambient air. A fast response time and excellent repeatability are just two examples of this sensor's special characteristics.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH₃. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Acetone	CH ₃ COCH ₃	1000 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol%	≤5 ppm (–)
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤20 ppm (–)
Ethene	C ₂ H ₄	1000 ppm	≤3 ppm
Ethine	C ₂ H ₂	200 ppm	No effect
Hydrogen	H ₂	1000 ppm	≤3 ppm
Hydrogen cyanide	HCN	25 ppm	≤3 ppm
Hydrogen sulfide	H ₂ S	20 ppm	≤50 ppm
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤4 ppm
Methane	CH ₄	10 Vol%	No effect
Methanol	CH ₃ OH	200 ppm	≤10 ppm
Nitrogen dioxide	NO ₂	20 ppm	≤10 ppm (−)
Nitrogen monoxide	NO	20 ppm	≤10 ppm
Phosphine	PH ₃	5 ppm	≤8 ppm
Sulfur dioxide	SO ₂	20 ppm	No effect
Tetrahydrothiophene	C ₄ H ₈ S	10 ppm	≤10 ppm

DrägerSensor® XXS Cl₂

Order no. 68 10 890


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Food and beverage, inorganic chemicals, manufacture of plastics, measuring dangerous substances, pulp and paper, power generation, sewage plants, water treatment.

Detection limit:	0.05 ppm			
Resolution:	0.05 ppm			
Measurement range/	0 to 20 ppm Cl ₂ (chlorine) 1			
relative sensitivity	0 to 20 ppm F ₂ (fluorine)	1.00		
	0 to 20 ppm Br ₂ (bromine)	1.00		
	0 to 20 ppm CIO ₂ (chlorine dioxide)	0.60		
Response time:	≤ 30 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	$\leq \pm 2\%$ of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.2 ppm/year			
Sensitivity:	$\leq \pm 2\%$ of measured value/month			
Warm-up time:	≤ 30 minutes			
Ambient conditions	- 			
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	≤ ± 0.05 ppm			
Sensitivity:	$\leq \pm 5\%$ of measured value			
Influence of humidity	- 			
Zero point:	No effect			
Sensitivity:	$\leq \pm 0.4\%$ of measured value/% RH			
Test gas:	approx. 1 to 18 ppm Cl ₂			

This sensor is suitable for monitoring concentrations of chlorine, bromine, fluorine, and chlorine dioxide in the ambient air. These sensors' advantages include excellent linearity and fast response times.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of chlorine. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm Cl ₂
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	≤ 0.6
Hydrogen cyanide	HCN	60 ppm	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤ 0.6 (-)
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	10 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	1 ppm	No effect
Phosphine	PH ₃	1 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤ 1 ⁽⁻⁾

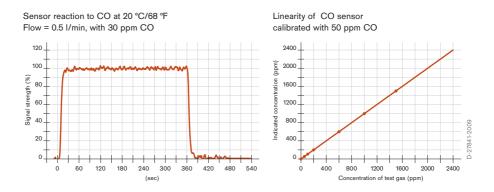
DrägerSensor[®] XXS CO DrägerSensor[®] XXS E CO

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 3500	no	yes	3 years	> 5 years
Dräger Pac 5500	no	yes	3 years	> 5 years
Dräger Pac 7000	no	yes	3 years	> 5 years
Dräger Pac 7000 5Y	no	yes	5 years	> 5 years
Dräger X-am 2500	no	yes	3 years	> 5 years
Dräger X-am 5000	no	yes	3/5 years	> 5 years
Dräger X-am 5600	no	yes	3/5 years	> 5 years

Selective filter

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, measuring dangerous substances, biogas.

Detection limit:	6 ppm
Resolution:	2 ppm
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)
Response time:	≤ 15 seconds (T ₉₀)
Measurement accuracy	-
Sensitivity:	$\leq \pm 2\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 2 ppm/year
Sensitivity:	≤ ± 3% of measured value/year
Warm-up time:	≤ 5 minutes
Ambient conditions	-
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	
Sensitivity:	≤ ± 0.3% of measured value/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.02% of measured value/% RH
Test gas:	approx. 20 to 1800 ppm CO

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. An internal selective filter, which is fitted to the sensor as standard, filters out most associated gases such as alcohol and acid gases H_2S , SO_2 .

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS CO

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Chlorine	Cl ₂	20 ppm	No effect
Ethanol	C₂H₅OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 200
Hydrogen	H ₂	0.1 Vol%	≤ 350
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	5 Vol%	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm	No effect

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS E CO

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Chlorine	Cl ₂	20 ppm	No effect
Ethanol	C₂H₅OH	250 ppm	No effect
Ethine	C_2H_2	100 ppm	≤ 200
Hydrogen	H ₂	0.1 Vol%	≤ 350
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	30 ppm	≤ 5
Methane	CH ₄	5 Vol%	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm	No effect

D-10161-2009

DrägerSensor[®] XXS CO

DrägerSensor[®] XXS CO LC

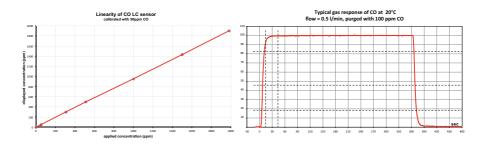
Order no. 68 13 210

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life			
Dräger Pac 7000	no	yes	2 years	> 5 years			
Dräger X-am 5000	no	yes	2 years	> 5 years			
Dräger X-am 5000	no	yes	2 years	> 5 years			

Selective filter

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 10,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 10,000 ppm x hours / 10 ppm = 1,000 hours.

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling, shipping, inorganic chemicals, steel, organic chemicals, oil and gas, measuring dangerous substances, biogas.

Detection limit:	- 1 ppm
Resolution:	1 ppm
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)
Response time:	≤ 15 seconds (T ₉₀)
Measurement accuracy	-
Sensitivity:	$\leq \pm 2\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 2 ppm/year
Sensitivity:	≤ ± 3% of measured value/year
Warm-up time:	≤ 30 minutes
Ambient conditions	-
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	
Sensitivity:	≤ ± 0.3% of measured value/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	\leq ± 0.02% of measured value/% RH
Test gas:	approx. 20 to 1800 ppm CO

In addition to an outstanding linearity and a quick response time, these CO sensors are highly selective. An internal selective filter, which is fitted to the sensor as standard, filters out most associated gases such as alcohol and acid gases H_2S , SO_2 .

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO		
Ammonia	NH ₃	100 ppm	No effect		
Carbon dioxide	CO ₂	30 Vol%	≤ 2		
Chlorine	Cl ₂	20 ppm	No effect		
Ethanol	C ₂ H₅OH	250 ppm	No effect		
Ethine	C ₂ H ₂	100 ppm	≤ 200		
Hydrogen	H ₂	0.1 Vol%	≤ 200		
Hydrogen chloride	HCI	40 ppm	No effect		
Hydrogen cyanide	HCN	50 ppm	No effect		
Hydrogen sulfide	H ₂ S	30 ppm	No effect		
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect		
Nitrogen dioxide	NO ₂	20 ppm	No effect		
Nitrogen monoxide	NO	30 ppm	≤ 5		
Methane	CH ₄	5 Vol%	No effect		
Propane	C ₃ H ₈	1 Vol%	No effect		
Sulfur dioxide	SO ₂	25 ppm	No effect		

DrägerSensor[®] XXS CO HC

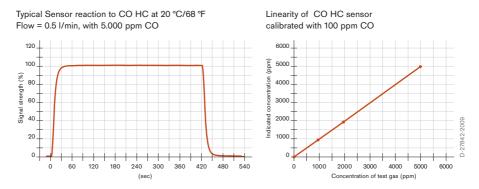
Order no. 68 12 010

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life		
Dräger X-am 5000	no	yes	1 year	> 3 years		
Dräger X-am 5600	no	yes	1 year	> 3 years		

Selective filter

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H₂S will be: Service life = 5,000 ppm x hours / 10 ppm = 500 hours.

MARKET SEGMENTS

Waste disposal industry, metal processing, petrochemical, fertilizer production, mining and tunneling (in particular monitoring high CO concentrations during rescue operations), shipping, inorganic chemicals, biogas, hazmat, steel industry, oil and gas, organic chemicals.

Detection limit:	10 ppm
Resolution:	5 ppm
Measurement range:	0 to 10,000 ppm CO (carbon monoxide)
Response time:	≤ 25 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	\leq ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 5 ppm/year
Sensitivity:	≤ ± 1% of measured value/month
Warm-up time:	≤ 5 minutes
Ambient conditions	
Temperature:	(-40 to 50)°C (-40 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	No effect
Sensitivity:	$\leq \pm 0.3\%$ of measured value/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	\leq ± 0.02% of measured value/% RH
Test gas:	approx. 100 to 9,000 ppm CO

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower reaches of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO No effect		
Ammonia	NH ₃	100 ppm			
Carbon dioxide	CO ₂	30 Vol%	No effect		
Chlorine	Cl ₂	20 ppm	No effect		
Ethanol	C₂H₅OH	250 ppm	No effect		
Ethine	C ₂ H ₂	100 ppm	≤ 200		
Hydrogen	H ₂	0.1 Vol%	≤ 350		
Hydrogen chloride	HCI	40 ppm	No effect		
Hydrogen cyanide	HCN	50 ppm	No effect		
Hydrogen sulfide	H ₂ S	30 ppm	No effect		
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect		
Nitrogen dioxide	NO ₂	20 ppm	No effect		
Nitrogen monoxide	NO	30 ppm	≤ 5		
Methane	CH ₄	5 Vol%	No effect		
Propane	C ₃ H ₈	1 Vol%	No effect		
Sulfur dioxide	SO ₂	25 ppm	No effect		

DrägerSensor[®] XXS CO H₂-CP

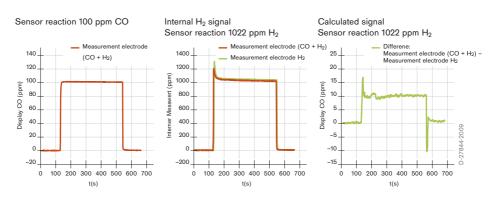
Order no. 68 11 950

Used in	Plug & Play	Plug & Play Replaceable		Expected sensor life		
Dräger X-am 5000	no yes		1 year	> 3 years		
Dräger X-am 5600	no	yes	1 year	> 3 years		

Selective filter

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Steel industry, refineries, sewage treatment plants

Detection limit:	6 ppm
Resolution:	2 ppm
Measurement range:	0 to 2,000 ppm CO (carbon monoxide)
Response time:	≤ 25 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 2\%$ of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 2 ppm/year
Sensitivity:	≤ ± 1% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	
Temperature:	(-40 to 50) °C (-40 to 122) °F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 5 ppm
Sensitivity:	≤ ± 0.3% of measured value/K
Influence of humidity	-
Zero point:	No effect
Sensitivity:	\leq ± 0.02% of measured value/% RH
Test gas:	approx. 20 to 1,800 ppm CO and 1,000 ppm H ₂

Carbon monoxide and hydrogen can occur simultaneously in many areas of work such as in the steel industry, refineries, and sewage treatment plants. Hydrogen affects the CO signal in conventional sensors, which leads to many false alarms. The DrägerSensor® XXS CO H₂-CP uses two measuring electrodes – one of which measures CO and H₂, the other only H₂. The CO level is calculated and displayed on the basis of the difference between the two signals. A hydrogen concentration of 1,000 ppm (2.5% LEL) causes a maximum displayed concentration of only 15 ppm CO, which does not activate the CO alarm.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO. To be sure, please check if gas mixtures are present.

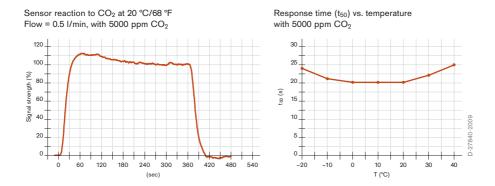
RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO	
Ammonia	NH ₃	100 ppm	No effect	
Carbon dioxide	CO ₂	30 Vol%	No effect	
Chlorine	Cl ₂	20 ppm	No effect	
Ethanol	C₂H₅OH	250 ppm	No effect	
Ethine	C ₂ H ₂	100 ppm	≤ 200	
Hydrogen	H ₂	0.1 Vol%	< = ±15 ⁽⁻⁾	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	30 ppm	No effect	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	5 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	30 ppm	≤ 5	
Propane	C ₃ H ₈	1 Vol%	No effect	
Sulfur dioxide	SO ₂	25 ppm	No effect	

1) after compensation

DrägerSensor® XXS CO₂

Order no. 68 10 889


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 1.25 years	no
Dräger X-am 5000	no	yes	1 year	> 1.25 years	no
Dräger X-am 5000	no	yes	1 year	> 1.25 years	no

MARKET SEGMENTS

Waste disposal, Food and beverage (breweries), metal processing, petrochemical, fertilizer production, sewage, police, customs and rescue services, mining and tunneling, shipping and transport, power generation.

Detection limit:	- 0.3 Vol%
Resolution:	0.1 Vol%
Measurement range:	0 to 5 Vol% CO ₂ (carbon dioxide)
Response time:	\leq 30 seconds (T ₅₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 20\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 0.2 Vol%/year
Sensitivity:	\leq ± 15% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	-
Temperature:	(-20 to 40)°C (-4 to 104)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 0.01 Vol%/K
Sensitivity:	≤ ± 2% of measured value
Influence of humidity	-
Zero point:	No effect
Sensitivity:	\leq ± 0.1% of measured value/% RH
Test gas:	1 to 4 Vol% CO ₂

This	sensor	is	highly	sensitive	(see	cross-sensitivity	list)	and	offers	an	economical
altern	ative to in	nfrar	ed sens	ors if you n	eed to	warn against CO ₂ (concer	ntratior	ns in the	amb	ient air.

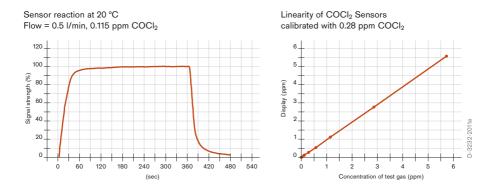
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm CO ₂
Ammonia	NH ₃	50 ppm	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C_2H_2	100 ppm	No effect
Hydrogen	H ₂	1.6 Vol%	No effect
Hydrogen chloride	HCI	20 ppm	No effect
Hydrogen cyanide	HCN	60 ppm	No effect
Hydrogen sulfide	H ₂ S	20 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Ozone	O ₃	1.5 ppm	No effect
Phosphine	PH ₃	5 ppm	No effect
Sulfur dioxide	SO ₂	20 ppm	No effect

DrägerSensor® XXS COCl₂

Order no. 68 12 005

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	0.5 years	> 1 year at below 25°C	
Dräger X-am 5600	no	yes	0.5 years	> 6 months at 35°C	


MARKTSEGMENTE

Manufacture of plastics, chemical industry, insecticides production, dyes, military

TECHNISCHE DATEN

Detection limit:	0,01 ppm		
Resolution:			
Measurement range:	0 bis 10 ppm COCl ₂ (Phosgene)		
Response time:	\leq 20 seconds (T ₂₀)		
Measurement accuracy	_		
Sensitivity:	≤ ± 5% of measured value		
Long-term drift, at 20°C (68°F)	_		
Zero point:	≤ ± 0,01 ppm/year		
Sensitivity:	≤ ± 1% of measured value/month		
Warm-up time:	≤ 1 hour		
Ambient conditions	_		
Temperature:	(-20 to 35) °C (-4 to 99) °F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1300) hPa		
Influence of temperature	-		
Zero point:	no effect		
Sensitivity:	≤ ± 0.2% of measured value/K		
Influence of humidity	-		
Zero point:	no effect		
Sensitivity:	≤ ± 0.05% of measured value/RH		
Test gas:	COCl ₂ test gas between 3.8 to 9 ppm (not in Dräger's portfolio)		

This sensor's advantages include a very low detection limit, excellent linearity and high signal stability.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of COCl₂. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. Symbol	Concentration	Reading in ppm COCl ₂
Ammonia	NH ₃	20 ppm	No effect
Carbon dioxide	CO ₂	1,5 Vol%	No effect
Carbon monoxide	CO	1000 ppm	No effect
Chlorine	Cl ₂	0,5 ppm	≤ 0.2
Ethanol	C ₂ H ₅ OH	260 ppm	No effect
Ethine	C_2H_2	20 ppm	No effect
Hydrogen	H ₂	8000 ppm	No effect
Hydrogen chloride	HCI	0,5 ppm	≤ 0.7
Hydrogen fluoride	HF	0,4 ppm	≤ 0.1 ppm
Hydrogen peroxide	H ₂ O ₂	1 ppm	No effect
Hydrogen sulfide	H ₂ S	1 ppm	≤ 1 ¹⁾
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Nitrogen dioxide	NO ₂	1 ppm	≤ 0.1(-)
Nitrogen monoxide	NO	30 ppm	No effect
Ozone	O ₃	0,3 ppm	≤ 0.05(-)
Phosphine	PH ₃	0,5 ppm	≤ 0.1 ppm
Propanol	C ₃ H ₇ OH	500 ppm	No effect
Sulfur dioxide	SO ₂	2 ppm	No effect

(-) Indicates negative deviation

1) Permanent exposure to H2S can result in a reduction of sensitivity.

DrägerSensor® XXS H₂

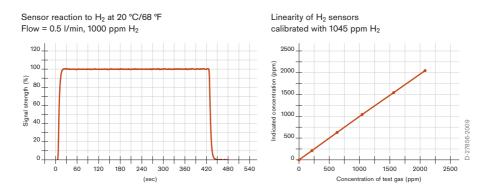
Order no. 68 12 370

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 2 years
Dräger X-am 5600	no	yes	1 year	> 2 years

Selective filter

Internal selective filter.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 5,000 ppm x hours / 10 ppm = 500 hours.

MARKET SEGMENTS

Leak detection, chemical, petrochemical, rocket fuel, production of plastics, steel production, industrial gases, fertilizer, battery charging stations, fuel cells.

Detection limit:	- 10 ppm
Resolution:	5 ppm
Measurement range:	0 to 2,000 ppm H ₂ (hydrogen)
Response time:	≤ 10 seconds (T ₉₀)
Measurement accuracy	-
Sensitivity:	\leq ± 1% of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 4 ppm/year
Sensitivity:	≤ ± 4% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	-
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 10 ppm
Sensitivity:	≤ ± 1 ppm/K
Influence of humidity	-
Zero point:	No effect
Sensitivity:	\leq ± 0.15% of measured value/% RH
Test gas:	approx. 20 to 2,000 ppm H ₂

This sensor enables the detection of hydrogen concentrations in ppm. Its very fast response time makes it especially suitable for detecting leaks.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂
Ammonia	NH ₃	100 ppm	No effect
Carbon dioxide	CO ₂	30 Vol%	≤ 2
Carbon monoxide	CO	100 ppm	≤ 200
Chlorine	Cl ₂	20 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 200
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen sulfide	H ₂ S	30 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH4	5 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect
Nitrogen monoxide	NO	20 ppm	≤ 51
Propane	C ₃ H8	1 Vol%	No effect
Sulfur dioxide	SO ₂	25 ppm	No effect

DrägerSensor[®] XXS H₂ HC

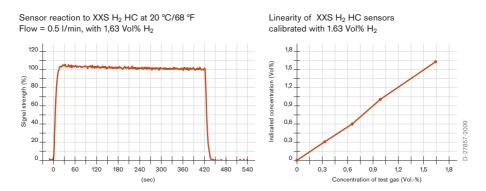
Order no. 68 12 025

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 2 years
Dräger X-am 5600	no	yes	1 year	> 2 years

Selective filter

Internal selective filter.

Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.


The filter's service life can be calculated as follows: 5,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 5,000 ppm x hours / 10 ppm = 500 hours.

MARKET SEGMENTS

Chemical industry, petrochemical industry, rocket fuel, leak detection, production of plastics, metal processing, industrial gases, fertilizer manufacturing, battery charging stations, fuel cells.

Detection limit:	0.02 Vol%
Resolution:	0.01 Vol%
Measurement range:	0 to 4 Vol% H ₂ (hydrogen)
Response time:	≤ 20 seconds (T ₉₀)
Measurement accuracy	_
Sensitivity:	≤ ± 2% of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.05 Vol%/year
Sensitivity:	≤ ± 3% of measured value/month
Warm-up time:	≤ 1 hour
Ambient conditions	_
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 0.05 Vol%
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	\leq ± 0.01% of measured value/% RH
Test gas:	approx. 0.2 to 3.99 Vol% H ₂

This sensor is suitable for measuring hydrogen across the entire LEL range. If a Dräger X-am 5600 is fitted with an IR-Ex sensor, then this sensor is the ideal addition for detecting any risk of explosion caused by hydrogen. Like all Dräger sensors, this one offers very fast response times and excellent linearity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂. To be sure, please check if gas mixtures are present.

Chem. symbol	Concentration	Display in Vol% H ₂
NH ₃	100 ppm	No effect
CO	1,000 ppm	≤ 0.1
CO ₂	30 Vol%	No effect
Cl ₂	20 ppm	No effect
C ₂ H ₅ OH	250 ppm	No effect
C ₂ H ₂	100 ppm	≤ 0.02
HCI	40 ppm	No effect
HCN	50 ppm	No effect
H_2S	30 ppm	No effect
(CH ₃) ₂ CCH ₂	100 ppm	No effect
CH4	5 Vol%	No effect
NO ₂	20 ppm	No effect
NO	20 ppm	≤ 0.05
C ₃ H ₈	1 Vol%	No effect
SO ₂	25 ppm	No effect
	$\begin{array}{c} \hline CO \\ \hline CO_2 \\ \hline Cl_2 \\ \hline C_2H_5OH \\ \hline C_2H_2 \\ \hline HCl \\ \hline HCN \\ \hline H_2S \\ \hline (CH_3)_2CCH_2 \\ \hline CH4 \\ \hline NO_2 \\ \hline NO \\ \hline C_3H_8 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline CO & 1,000 \mbox{ ppm} \\ \hline CO_2 & 30 \mbox{ Vol\%} \\ \hline Cl_2 & 20 \mbox{ ppm} \\ \hline C_2H_5OH & 250 \mbox{ ppm} \\ \hline C_2H_2 & 100 \mbox{ ppm} \\ \hline HCI & 40 \mbox{ ppm} \\ \hline HCI & 40 \mbox{ ppm} \\ \hline HCN & 50 \mbox{ ppm} \\ \hline H_2S & 30 \mbox{ ppm} \\ \hline (CH_3)_2CCH_2 & 100 \mbox{ ppm} \\ \hline CH4 & 5 \mbox{ Vol\%} \\ \hline NO_2 & 20 \mbox{ ppm} \\ \hline NO & 20 \mbox{ ppm} \\ \hline C_3H_8 & 1 \mbox{ Vol\%} \\ \hline \end{tabular}$

DrägerSensor[®] XXS HCN

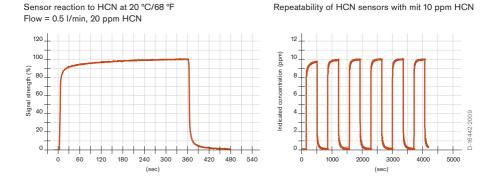
Order no. 68 10 887

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 7000	no	yes	1 year	> 1.5 years
Dräger X-am 5000	no	yes	1 year	> 1.5 years
Dräger X-am 5600	no	yes	1 year	> 1.5 years

Selective filter

B2X (6812424) - replaceable.

Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.


The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical warfare agent (blood agents).

Detection limit:	0.5 ppm
Resolution:	0.1 ppm
Measurement range/	0 to 50 ppm HCN (hydrogen cyanide)
relative sensitivity	
Response time:	\leq 10 seconds (T ₅₀)
Measurement accuracy	-
Sensitivity:	$\leq \pm 5\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 2 ppm/year
Sensitivity:	≤ ± 5% of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	-
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 1 ppm
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	-
Zero point:	No effect
Sensitivity:	≤ ± 0.1% of measured value/% RH
Test gas:	approx. 1 to 45 ppm HCN

This sensor's extremely quick response time and excellent repeatability provides a fast and reliable warning against Prussic acid (hydrogen cyanide).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCN To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm HCN
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	СО	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 20 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 10
Hydrogen	H ₂	1.5 Vol%	≤ 10
Hydrogen chloride	HCI	20 ppm	≤1
Hydrogen sulfide	H ₂ S	20 ppm	≤ 50
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤1.5
Methane	CH ₄	1 Vol%	No effect
Nitrogen dioxide	NO ₂	10 ppm	≤ 20 ⁽⁻⁾
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	1 ppm	≤ 8
Sulfur dioxide	SO ₂	20 ppm	≤ 10

(-) Indicates negative deviation

DrägerSensor[®] XXS HCN PC

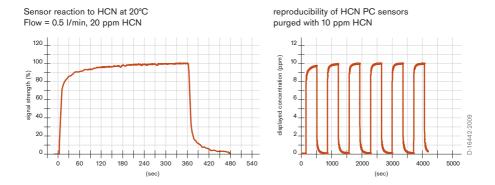
Order no. 68 13 165

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 7000	no	yes	1 year	> 1.5 years
Dräger X-am 5000	no	yes	1 year	> 1.5 years
Dräger X-am 5600	no	yes	1 year	> 1.5 years

Selective filter

B2X (6812424) - replaceable.

Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.


The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Metal processing, mining, fumigation and pest control, chemical warfare agent (blood agents).

Leginnere of Fourierine		
Detection limit:	- 3 ppm	
Resolution:	0.5 ppm	
Measurement range:	0 to 50 ppm HCN (hydrogen cyanide)	
	0 to 100 ppm C ₂ N ₂ (cyanogen)*	
Response time:	≤ 10 seconds (T ₅₀)	
Measurement accuracy		
Sensitivity:	$\leq \pm 5\%$ of measured value	
Long-term drift, at 20°C (68°F)	-	
Zero point:	≤ ± 3 ppm/year	
Sensitivity:	≤ ± 2% of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions	_	
Temperature:	(-20 to 50)°C (-4 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature	-	
Zero point:	≤ ± 3 ppm	
Sensitivity:	$\leq \pm 5\%$ of measured value	
Influence of humidity	-	
Zero point:	No effect	
Sensitivity:	\leq ± 0.1% of measured value/% RH	
Test gas:	approx. 7 to 45 ppm HCN	

This sensor's extremely quick response time and excellent repeatability provides a fast and reliable warning against Prussic acid (hydrogen cyanide).

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of HCN To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

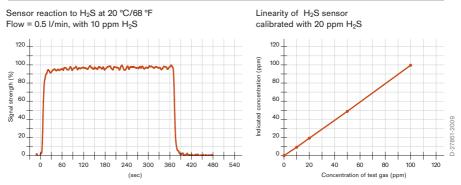
Gas/vapor	Chem. symbol	Concentration	Display in ppm HCN
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	1 ppm	2 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 10
Hydrogen	H ₂	0.5 Vol%	≤ 3
Hydrogen chloride	HCI	20 ppm	≤1
Hydrogen sulfide	H ₂ S	1 ppm	≤ 3
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	1 Vol%	No effect
Nitrogen dioxide	NO ₂	1 ppm	≤ 1 (-)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	0.1 ppm	≤1
Sulfur dioxide	SO ₂	1 ppm	≤ 2

DrägerSensor[®] XXS H₂S DrägerSensor[®] XXS E H₂S

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	3 years	> 5 years	no
Dräger Pac 7000 5Y	no	yes	5 years	> 5 years	no
Dräger X-am 5000	no	yes	3/5 years	> 5 years	no
Dräger X-am 5600	no	yes	3/5 years	> 5 years	no

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.


TECHNICAL SPECIFICATIONS

0 to 200 ppm H ₂ S (hydrogen sulfide)			
econds (T ₉₀)			
of measured value			
pm/year			
of measured value/year			
nutes			
o 50)°C (-40 to 122)°F			
90)% RH			
9 1,300) hPa			
ect			
of measured value			
ect			
3% of measured value/% RH			
. 5 to 180 ppm H ₂ S			

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

This sensor's advantages include fast response times and excellent linearity. At concentrations up to 20 ppm, sulfur dioxide has hardly any effect on hydrogen sulfide readings. This enables the selective measurement of the gas concentration using the DrägerSensor[®] XXS SO₂ (with integrated selective filter) together with the DrägerSensor[®] XXS H₂S in a device such as a Dräger X-am 5000 or X-am 5600

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS H2S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Acetylene	C ₂ H ₂	100 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	CO	500 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 2 ⁽⁻⁾
Dimethyl disulphide	CH ₃ SSCH ₃	20 ppm	≤ 5
Dimethylsulphide	(CH ₃) ₂ S	20 ppm	≤ 5
Ethanol	C ₂ H ₅ OH	250 ppm	no effect
Ethyl mercaptan	C ₂ H ₅ SH	20 ppm	≤ 12
Hydrogen	H ₂	2 Vol%	≤ 18
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Methyl mercaptan	CH₃SH	20 ppm	≤ 15
Nitrogen dioxide	NO ₂	20 ppm	≤ 5(-)

| 217

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS H₂S

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 5
Sulphur dioxide	SO ₂	20 ppm	≤ 2
tert- Butyl mercaptan	(CH ₃) ₃ CSH	20 ppm	≤ 6
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 3

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS E H₂S

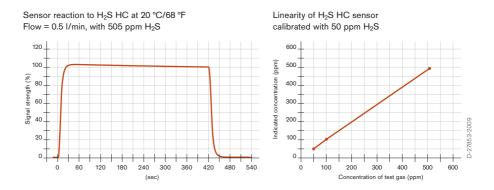
Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S	
Acetylene	C ₂ H ₂	100 ppm	no effect	
Ammonia	NH ₃	200 ppm	no effect	
Carbon dioxide	CO ₂	5 Vol%	no effect	
Carbon monoxide	СО	500 ppm	no effect	
Chlorine	Cl ₂	10 ppm	≤2(-)	
Ethanol	C ₂ H ₅ OH	250 ppm	no effect	
Hydrogen	H ₂	0.1 Vol%	no effect	
Hydrogen chloride	HCI	40 ppm	no effect	
Hydrogen cyanide	HCN	50 ppm	no effect	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	5 Vol%	no effect	
Nitrogen dioxide	NO ₂	20 ppm	≤5 ⁽⁻⁾	
Nitrogen monoxide	NO	30 ppm	no effect	
Propane	C ₃ H ₈	1 Vol%	no effect	
Sulphur dioxide	SO ₂	20 ppm	≤ 2	

DrägerSensor® XXS H₂S

DrägerSensor[®] XXS H₂S HC

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no

MARKET SEGMENTS


Waste disposal industry, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, measuring hazardous material, biogas.

TECHNICAL SPECIFICATIONS

Detection limit:	4 ppm			
Resolution:	2 ppm			
Measurement range:	0 to 1,000 ppm H ₂ S (hydrogen sulfide)			
Response time:	≤ 15 seconds (T ₉₀)			
Measurement accuracy	-			
Sensitivity:	\leq ± 2% of measured value			
Long-term drift, at 20°C (68°F)	-			
Zero point:	≤ ± 2 ppm/year			
Sensitivity:	≤ ± 1% of measured value/month			
Warm-up time:	≤ 5 minutes			
Ambient conditions	-			
Temperature*:	(-40 to 50)°C (-40 to 122)°F			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature	_			
Zero point:	No effect			
Sensitivity:	$\leq \pm 5\%$ of measured value			
Influence of humidity	_			
Zero point:	No effect			
Sensitivity:	\leq ± 0.03% of measured value/% RH			
Test gas:	approx. 40 to 900 ppm H ₂ S			

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

Because of its excellent linearity, this sensor can be calibrated in its lower measurement range using a hydrogen sulfide test gas without compromising on accuracy in its upper measurement range. It also offers a fast response time and good selectivity.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	CO	500 ppm	No effect
Chlorine	Cl ₂	10 ppm	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	0.1 Vol%	No effect
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Hydrogen phosphide	PH ₃	5 ppm	≤ 4
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 2

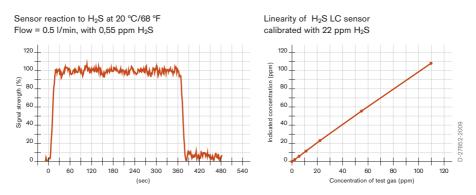
DrägerSensor[®] XXS H₂S LC

Order no. 68 11 525

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 3500	no	yes	3 years	> 5 years	no
Dräger Pac 5500	no	yes	3 years	> 5 years	no
Dräger Pac 7000	no	yes	3 years	> 5 years	no
Dräger X-am 2500	no	yes	3 years	> 5 years	no
Dräger X-am 5000	no	yes	3 years	> 5 years	no
Dräger X-am 5600	no	yes	3 years	> 5 years	no

MARKET SEGMENTS

Waste disposal, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, steel industry, pulp and paper, organic chemicals, oil and gas, hazmat, biogas.


TECHNICAL SPECIFICATIONS

Detection limit:	0.4 ppm			
Resolution:	0.1 ppm			
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)			
Response time:	≤ 15 seconds (T ₉₀)			
Measurement accuracy				
Sensitivity:	$\leq \pm 5\%$ of measured value			
Long-term drift, at 20°C (68°F)				
Zero point:	≤ ± 0.2 ppm/year			
Sensitivity:	≤ ± 5% of measured value/year			
Warm-up time:	≤ 5 minutes			
Ambient conditions	-			
Temperature*:	(-40 to 50)°C (-40 to 122)°F			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	No effect			
Sensitivity:	$\leq \pm 5\%$ of measured value			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	\leq ± 0.1% of measured value/% RH			
Test gas:	approx. 5 to 90 ppm H ₂ S			

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

Combined with an excellent linearity and a fast response time, this sensor enables the selective measurement of hydrogen sulfide at below 1 ppm.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of H₂S. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Chem. symbol Concentration	
Acetylene	C_2H_2	100 ppm	No effect
Ammonia	NH ₃	200 ppm	No effect
Carbon dioxide	CO ₂	5 Vol%	No effect
Carbon monoxide	CO	500 ppm	≤ 1
Chlorine	Cl ₂	10 ppm	≤ 1 ⁽⁻⁾
Dimethyl disulphide	CH ₃ SSCH ₃	20 ppm	≤ 5
Dimethylsulphide	(CH ₃) ₂ S	20 ppm	≤ 5
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethyl mercaptan	C ₂ H ₅ SH	20 ppm	≤ 13
Hydrogen	H ₂	0.1 Vol%	≤ 0.5
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen cyanide	HCN	50 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	5 Vol%	No effect
Methyl mercaptan	CH₃SH	20 ppm	≤ 16 ppm
Nitrogen dioxide	NO ₂	20 ppm	≤ 4 ⁽⁻⁾
Nitrogen monoxide	NO	30 ppm	No effect
Propane	C ₃ H ₈	1 Vol%	No effect
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 5
Sulphur dioxide	SO ₂	20 ppm	≤ 1.5
tert- Butyl mercaptan	(CH ₃) ₃ CSH	20 ppm	≤ 4
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 3

DrägerSensor® XXS H₂S/CO

Order no. 68 11 410

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	2 years	> 3 years
Dräger X-am 5600	no	yes	2 years	> 3 years

Selective filter

Internal selective filter for CO.

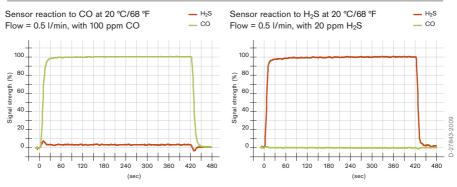
Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.

The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Waste disposal, metal processing, biogas, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, paper industry, hazmat, steel industry, oil and gas, organic chemicals.

TECHNICAL SPECIFICATIONS


Detection limit:	2 ppm (H ₂ S)/6 ppm (CO)
Resolution:	1 ppm (H ₂ S)/2 ppm (CO)
Measurement range:	0 to 200 ppm H ₂ S (hydrogen sulfide)
	0 to 2,000 ppm CO (carbon monoxide)
Response time:	≤ 20 seconds (T ₉₀)
Measurement accuracy	-
Sensitivity:	$\leq \pm 2\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 2 ppm/year
Sensitivity:	≤ ± 1% of measured value/month
Warm-up time:	≤ 5 minutes
Ambient conditions	-
Temperature*:	(-40 to 50)°C (-40 to 122)°F
Humidity*:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	$\leq \pm 2 \text{ ppm } (H_2S) \leq \pm 5 \text{ ppm } (CO)$
Sensitivity:	\leq \pm 5% of measured value (H_2S) \leq \pm 0.3% of measured value/K (CO)
Influence of humidity	-
Zero point:	No effect
Sensitivity:	\leq ± 0.05% of measured value/% RH
Test gas:	approx. 5 to 90 ppm H ₂ S
	approx. 20 to 450 ppm CO

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

Carbon monoxide and hydrogen sulfide occur together in many areas of work. This sensor can moni-

tor both gases simultaneously.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO or H₂S. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm H₂S	Display in ppm CO
Ammonia	NH ₃	100 ppm	No effect	No effect
Carbon dioxide	CO ₂	30 vol. %	No effect	No effect
Carbon monoxide	CO	100 ppm	No effect	100
Chlorine	Cl ₂	20 ppm	≤ 2 (-) ¹)	No effect
Dimethyl disulphide	CH ₃ SSCH ₃	20 ppm	≤ 11	No effectt
Dimethylsulphide	(CH ₃) ₂ S	20 ppm	≤ 5	No effect
Ethine	C ₂ H ₂	100 ppm	No effect	≤ 200
Ethyl alcohol	C ₂ H ₅ OH	250 ppm	No effect	No effect
Ethyl mercaptan	C₂H₅SH	20 ppm	≤ 13	no effect
Hydrogen	H ₂	0.1 vol. %	No effect	≤ 350
Hydrogen chloride	HCI	40 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulphide	H ₂ S	20 ppm	20	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	No effect
Methane	CH ₄	5 vol. %	No effect	No effect
Methyl mercaptan	CH₃SH	20 ppm	≤ 16 ppm	≤ 16 ppm
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-) ¹)	No effect
Nitrogen monoxide	NO	30 ppm	No effect	≤ 5
Propane	C ₃ H ₈	1 vol. %	No effect	No effect
sec-Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 7	No effect
Sulphur dioxide	SO ₂	25 ppm	≤ 2	No effect
tert- Butyl mercaptan	(CH ₃) ₃ CSH	20 ppm	≤ 8	No effect
Tetrahydrothiophene	C ₄ H ₈ S	20 ppm	≤ 3	No effect

(-) 1) negative reading

DrägerSensor® XXS H₂S LC/CO LC

Order no. 68 13 280

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	2 years	> 3 years
Dräger X-am 5600	no	yes	2 years	> 3 years

Selective filter

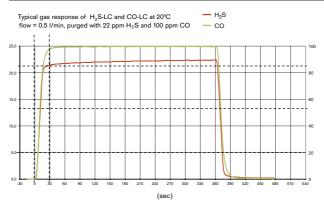
Internal selective filter for CO.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.

The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Waste disposal, metal processing, biogas, petrochemical, fertilizer production, sewage, mining and tunneling, shipping, inorganic chemicals, paper industry, hazmat, steel industry, oil and gas, organic chemicals.


TECHNICAL SPECIFICATIONS

Detection limit:	0,4 ppm (H ₂ S)/2 ppm (CO)			
Resolution:	0.1 ppm (H ₂ S)/1 ppm (CO)			
Measurement range:	0 to 100 ppm H ₂ S (hydrogen sulfide)			
	0 to 2,000 ppm CO (carbon monoxide)			
Response time:	≤ 20 seconds (T ₉₀)			
Measurement accuracy	-			
Sensitivity:	$H_2S: \le \pm 5$ % of measured value, CO: $\le \pm 2$ % of measured value			
Long-term drift, at 20°C (68°F)	- 			
Zero point:	H ₂ S: ≤ ± 0,2 ppm/year, CO: ≤ ± 2 ppm/year			
Sensitivity:	$H_2S: \le \pm 5$ % of measured value/year, CO: $\le \pm 3$ % of measured value/year			
Warm-up time:	$H_2S: \le 5$ Minuten, CO: ≤ 30 Mintuen			
Ambient conditions	- 			
Temperature*:	(-40 to 50)°C (-40 to 122)°F			
Humidity*:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature				
Zero point:	H ₂ S: no effect, CO: ≤ ± 5 ppm			
Sensitivity:	H ₂ S: $\leq \pm 0.1$ % of measured value, CO: $\leq \pm 0.3$ % of measured value/K			
Influence of humidity				
Zero point:	No effect			
Sensitivity:	$H_2S: \le \pm 0.1$ % of measured value/ %r.h., $CO: \le \pm 0.02$ % of measured value/ %r.h.			
Test gas:	approx. 5 to 90 ppm H_2S			
	approx. 20 to 1800 ppm CO			
	_			

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

Carbon monoxide and hydrogen sulfide occur together in many areas of work. This sensor can monitor both gases simultaneously. Because of the low detection limits, this sensor is suitable for the limit value monitoring.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of CO or H₂S. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

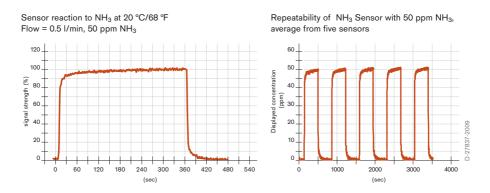
Gas/vapor	Chem. symbol	Concentration	Display in ppm H ₂ S	Display in ppm CO with selektive filter
Acetylene	C ₂ H ₂	100 ppm	No effect	≤ 200
Ammonia	NH ₃	100 ppm	No effect	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect	No effect
Carbon monoxide	CO	500 ppm	≤ 1	
Chlorine	Cl ₂	10 ppm	≤ 1 (-)	No effect
Dimethyl disulphide	CH ₃ SSCH ₃	20 ppm	≤ 5	No effect
Dimethyl sulfide	(CH ₃) ₂ S	20 ppm	≤ 5	No effect
Ethyl Alcohol	C ₂ H ₅ OH	250 ppm	No effect	No effect
Ethyl mercaptan	C ₂ H ₅ SH	20 ppm	≤ 13	No effect
Hydrogen	H ₂	0.1 Vol%	≤ 0.5	≤ 200
Hydrogen chloride	HCI	40 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulphide	H ₂ S			No effect
Isobutylene	i-C ₄ H ₈	100 ppm	No effect	No effect
Methane	CH ₄	5 Vol%	No effect	No effect
Methyl mercaptan	CH₃SH	20 ppm	≤ 16	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 4 (-)	No effect
Nitrogen monoxide	NO	30 ppm	No effect	≤ 5
Propane	C ₃ H ₈	1 Vol%	No effect	No effect
sec. Butyl mercaptan	C ₄ H ₁₀ S	20 ppm	≤ 5	No effect
Sulfur dioxide	SO ₂	20 ppm	≤ 1.5	No effect
tert. Butyl mercaptan	(CH ₃) ₃ CSH	20 ppm	≤ 4	No effect
Tetrahydrothiopene	C ₄ H ₈ S	20 ppm	≤ 3	No effect
() Indicates populing deviation				

DrägerSensor® XXS NH₃

Order no. 68 10 888

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no

MARKET SEGMENTS


Food and beverage, poultry farming, power generation, inorganic chemicals, fertilizer production, hazmat, fumigation, metal processing, petrochemical, pulp and paper.

TECHNICAL SPECIFICATIONS

Detection limit:	4 ppm
Resolution:	1 ppm
Measurement range:	0–300 ppm NH₃ (ammonia)
Response time:	\leq 10 seconds (T ₅₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 3\%$ of measured value
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 5 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 12 hours
Ambient conditions	-
Temperature*:	(-40 to 50)°C (-40 to 122)°F
Humidity*:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 5 ppm
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	
Zero point:	≤ ± 0.1 ppm/% RH
Sensitivity:	\leq ± 0.2% of measured value/% RH
Test gas:	approx. 10 to 150 ppm NH ₃
iest gas:	approx. to to 150 pptit NH3

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations). These dynamic effects decrease within 2 to 3 minutes.

A fast response time and excellent repeatability are just two examples of this sensor's special characteristics.

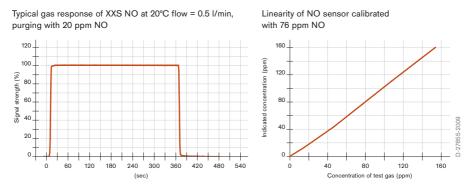
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm NH ₃
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	1,000 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 30 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 40
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 4
Hydrogen chloride	HCI	20 ppm	≤ 15 (-)
Hydrogen sulfide	H ₂ S	20 ppm	≤ 70
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 10 (-)
Nitrogen monoxide	NO	20 ppm	≤ 10
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	1 ppm	≤ 2
Sulfur dioxide	SO ₂	20 ppm	No effect

DrägerSensor® XXS NO

Order no. 68 11 545


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Power and district heating plants, chemical industry.

Detection limit:	0.3 ppm			
Resolution:	0.1 ppm			
Measurement range:	0 to 200 ppm NO (nitrogen monoxide)			
Response time:	≤ 10 seconds (T ₉₀)			
Measurement accuracy	-			
Sensitivity:	$\leq \pm 3\%$ of measured value			
Long-term drift, at 20°C (68°F)	-			
Zero point:	_ ≤ ± 0.3 ppm/year			
Sensitivity:	\leq ± 2% of measured value/month			
Warm-up time:	≤ 20 hours			
Ambient conditions				
Temperature:	(-40 to 50)°C (-40 to 122)°F			
Humidity:	(10 to 90)% RH			
Pressure:	(700 to 1,300) hPa			
Influence of temperature	-			
Zero point:	≤ ± 0.02 ppm/K			
Sensitivity:	$\leq \pm 0.3\%$ of measured value/K			
Influence of humidity	▼			
Zero point:	No effect			
Sensitivity:	≤ ± 0.05% of measured value/% RH			
Test gas:	approx. 3 to 175 ppm NO			

This sensor enables a selective measurement of NO. NO₂ concentrations < 20 ppm have not effects. It also offers a very fast response time and excellent linearity across its entire measurement range.

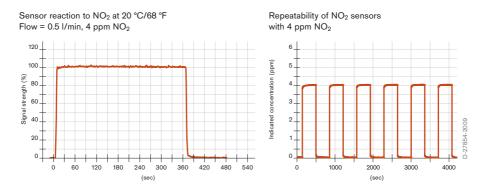
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm NO	
Acetone	CH ₃ COCH ₃	1,000 ppm	No effect	
Ammonia	NH ₃	500 ppm	No effect	
Benzene	C ₆ H ₆	0.6 Vol%	No effect	
Carbon dioxide	CO ₂	5 Vol%	No effect	
Carbon monoxide	CO	2,000 ppm	No effect	
Chlorine	Cl ₂	5 ppm	No effect	
Ethanol	C_2H_5OH	250 ppm	No effect	
Ethene	C_2H_4	0.1 Vol%	No effect	
Ethine	C_2H_2	0.8 Vol%	No effect	
Hydrogen	H ₂	1.5 Vol%	No effect	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	5 ppm	1	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	2 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Phosphine	PH₃	2 ppm	No effect	
Propane	C ₃ H ₈	1 Vol%	No effect	
Sulphur dioxide	SO ₂	10 ppm	No effect	
Tetrachloroethylene	CCl ₂ CCl ₂	1,000 ppm	No effect	
Toluene	C ₆ H ₅ CH ₃	0.6 Vol%	No effect	
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	

DrägerSensor® XXS NO₂

Order no. 68 10 884


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 2 years	no
Dräger X-am 2500	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Inorganic chemicals, metal processing, oil and gas, petrochemical, steel industry, shipping, rocket engineering, mining and tunneling.

Detection limit:	0.2 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)
Response time:	\leq 15 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	≤ ± 2% of measured value
Long-term drift,	
at 20°C (68°F)	
Zero point:	≤ ± 1 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	
Temperature:	 (-30 to 50)°C (-22 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	≤ ± 1 ppm
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.2% of measured value/% RH
Test gas:	approx. 1 to 45 ppm NO ₂

This sensor's advantages include a fast response time and excellent repeatability. This sensor enables a selective measurement of NO₂. NO concentrations < 20 ppm do not influence the measurement results, thus a selective NO₂ measurement is possilbe.

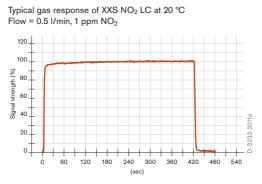
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor Chem. symbol		Concentration	Display in ppm NO ₂	
Ammonia	NH ₃	50 ppm	No effect	
Carbon dioxide	CO ₂	1.5 Vol%	No effect	
Carbon monoxide	CO	200 ppm	No effect	
Chlorine	Cl ₂	10 ppm	≤ 5	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethine	C ₂ H ₂	100 ppm	≤ 10 ⁽⁻⁾	
Hydrogen	H ₂	1,000 ppm	No effect	
Hydrogen chloride	HCI	20 ppm	≤ 10 ⁽⁻⁾	
Hydrogen cyanide	HCN	60 ppm	≤ 10 ⁽⁻⁾	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 100 ⁽⁻⁾	
Isobutylene	(CH ₃) ₂ CCH ₂	10 ppm	≤ 0.8(-)	
Methane	CH4	1 Vol%	No effect	
Nitrogen monoxide	NO	20 ppm	No effect	
Ozone	O ₃	0.5 ppm	No effect	
Phosphine	PH₃	1 ppm	≤ 4 ⁽⁻⁾	
Sulphur dioxide	SO ₂	20 ppm	≤ 20(-)	

DrägerSensor® XXS NO₂ LC

Order no. 68 12 600


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Mining and tunnelling (emissions from diesel-engined vehicles), inorganic chemistry, metal processing, oil & gas, petrochemical industry, shipping, rocket technology

Detection limit:	0.04 ppm
Resolution:	0.02 ppm
Measurement range:	0 to 50 ppm NO ₂ (nitrogen dioxide)
Response time:	≤ 15 seconds (T ₉₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 3\%$ of measured value
Long-term drift,	
at 20°C (68°F), 50% RH	
Zero point:	≤ ± 0.04 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 120 minutes
Ambient conditions	
Temperature:	(-30 to 50)°C (-22 to 122)°F
Humidity:	(15 to 80)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	
Zero point:	No effect
Sensitivity:	$\leq \pm 0.5\%$ of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	$\leq \pm 0.1\%$ of measured value/% RH
Test gas:	approx. 0.5 to 45 ppm NO ₂

Low cross sensitivities (e.g against SO₂, H_2S , NO and CO), which allows a selective measurement of NO₂. With a detection limit of 0.04 ppm and a quick response time this sensor is excellent to measure around the limit values.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NO₂. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor Chem. symbol		Concentration	Display in ppm NO ₂ LC	
Acetylene	C ₂ H ₂	100 ppm	No effect	
Ammonia	NH ₃	NH ₃ 30 ppm		
Arsine	AsH ₃	0.5 ppm	No effect	
Carbon dioxide	CO ₂	5 Vol%	No effect	
Carbon monoxide	CO	2,000 ppm	No effect	
Chlorine	Cl ₂	1 ppm	≤ 1.5	
Chlorine dioxide	CIO ₂	1 ppm	≤ 1.5	
Ethane	C ₂ H ₆	0.1 Vol%	No effect	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Hydrazine	N ₂ H ₄	1 ppm	No effect	
Hydrogen	H ₂	0.1 Vol%	No effect	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	1 ppm	≤ 0.03(-)	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	5 Vol%	No effect	
Nitrogen monoxide	NO	30 ppm	No effect	
Ozone	O ₃	0,5 ppm	≤1	
Phosphine	PH ₃	0,5 ppm	No effect	
Propane	C ₃ H ₈	1 Vol%	No effect	
Sulfur dioxide	SO ₂	1 ppm	≤ 0.12 ⁽⁻⁾	

DrägerSensor® XXS OV

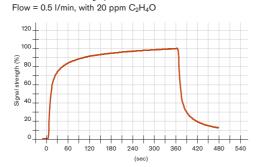
Order no. 68 11 530

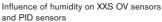
Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no

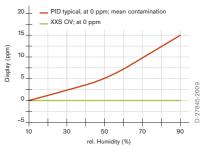
MARKET SEGMENTS

Production of plastics, disinfection, painter, chemical industry, pest control.

Detection limit:	0.5 ppm					
Resolution:	0.5 ppm					
Measurement range/	C ₂ H ₄ O / CO					
relative sensitivity	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)	1.00	0.33			
	0 to 200 ppm C ₃ H ₆ O (propylene oxide)	0.85	0.40			
	0 to 100 ppm C ₂ H ₄ (ethene)	0.75	0.45			
	0 to 100 ppm C ₃ H ₆ (propene)	0.65	0.50			
	0 to 100 ppm C ₂ H ₃ Cl (vinyl chloride)	0.60	0.55			
	0 to 200 ppm CH₃OH (methanol)	0.75	0.45			
	0 to 100 ppm CH ₂ CHCHCH ₂ (butadiene)	1.40	0.25			
	0 to 100 ppm HCHO (formaldehyde)	1.50	0.20			
	0 to 300 ppm (H ₃ C) ₂ CHOH (isopropanol)	0.35	0.95			
	0 to 200 ppm C ₄ H ₈ O (tetrahydrofuran)	0.80	0.40			
	0 to 100 ppm C ₂ H ₃ OCH ₂ CI (1-chloro-2,3 epoxypropane)	0.35	0.95			
	0 to 100 ppm C ₆ H ₅ CHCH ₂ (styrene)	0.80	0.40			
	0 to 100 ppm H ₂ CC(CH ₃)COOCH ₃ (methyl methacrylate)	0.35	0.95			
Response time:	≤ 20 seconds (T ₅₀)					
Measurement accuracy						
Sensitivity:	$\leq \pm$ 5% of measured value					
Long-term drift, at 20°C (68°F)						
Zero point:	≤ ± 5 ppm/year					
Sensitivity:	\leq ± 2% of measured value/month					
Warm-up time:	≤ 18 hours					
Ambient conditions						
Temperature:	(-20 to 50)°C (-4 to 122)°F					
Humidity:	(10 to 90)% RH					
Pressure:	(700 to 1,300) hPa					
Influence of temperature						
Zero point:	± 2 ppm at (-20 to 40)°C (-4 to 104)°F					
Zero point:	± 0.5 ppm/K at (40 to 50)°C (104 to 122)°F					
Sensitivity:	$\leq \pm 1\%$ of measured value/K					
Influence of humidity						
Zero point:	No effect					
Sensitivity:	$\leq \pm 0.2\%$ of measured value/% RH					


TECHNICAL SPECIFICATIONS


approx. 3 to 50 ppm C ₂ H ₄ O
The Dräger Sensor XXS OV has a defined cross-sensitivity to carbon
monoxide (CO). It can be calibrated with CO as a replacement for all
of its target gases. This replacement calibration using CO can
produce an additional measuring error of up to 20%. We recommend
that devices are calibrated with the gas you intend to detect in actual
operation. Calibration using the target gas is more accurate than
replacement gas calibration. Using mixed gas please ensure the test
gas does not contain NO, SO $_2$ or H $_2$ S. This causes a reading on the
instrument's display due to cross sensitivities.


SPECIAL CHARACTERISTICS

Sensor reaction to C2H4O at 20 °C/68 °F

This sensor is especially suited for detecting leakages of numerous organic gases and vapors. Although it does not detect as broad a spectrum of gases as a PID sensor, it has the key advantage of being almost completely insensitive to moisture. It also does not need to be calibrated every day, having instead a six-month calibration interval typical of electrochemical sensors.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor Chem. symbol		Concentration	Display in ppm C ₂ H ₄ O	
Acetaldehyde	CH ₃ CHO	55 ppm	≤ 15	
Acetic acid	CH ₃ COOH	100 ppm	No effect	
Acrylonitrile	H ₂ CCHCN	80 ppm	≤ 5	
Ammonia	NH ₃	100 ppm	No effect	
Benzene	C ₆ H ₆	2,000 ppm	No effect	
Butyraldehyd	C ₃ H ₇ CHO	50 ppm	≤ 17 ppm	
Carbon dioxide	CO ₂	30 Vol%	No effect	
Carbon monoxide	СО	100 ppm	≤ 33	
Chlorine	Cl ₂	10 ppm	No effect	
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect	
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect	
Diethyl ether	(C ₂ H ₅) ₂ O	100 ppm	≤ 60	
Dimethylformamide	HCON(CH3 ₃) ₂	100 ppm	No effect	
Ethane	C ₂ H ₆	0.2 Vol%	No effect	
Ethanol	C ₂ H ₅ OH	250 ppm	≤ 150	
Ethine	C_2H_2	100 ppm	≤ 150	
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect	
Hydrogen	H ₂	1,000 ppm	≤ 5	
Hydrogen chloride	HCI	20 ppm	≤ 5	
Hydrogen cyanide	HCN	20 ppm	≤ 10	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 40	
lsobutylene	(CH ₃) ₂ CCH ₂	50 ppm	≤ 45	
Nitrogen dioxide	NO ₂	20 ppm	≤ 2	
Nitrogen monoxide	NO	20 ppm	≤ 20	
Methane	CH ₄	2 Vol%	No effect	
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect	
Phosgene	COCl ₂	50 ppm	No effect	
Sulfur dioxide	SO ₂	20 ppm	≤ 10	
Tetrachloroethylene	CCl ₂ CCl ₂	100 ppm	No effect	
Toluene	C ₆ H ₅ CH ₃	1,000 ppm	No effect	
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	
Vinyl acetate	CH ₃ COOC ₂ H ₃	30 ppm	≤ 30	
Xylene	C ₆ H ₄ (CH ₃) ₂	0.2 Vol%	No effect	

DrägerSensor[®] XXS OV

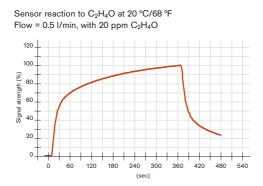
DrägerSensor® XXS OV-A

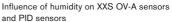
Order no. 68 11 535

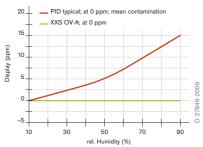
Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000	no	yes	1 year	> 2 years	no
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no

MARKET SEGMENTS

Production of plastics, disinfection, paintshops, chemical industry.


Detection limit:	1 ppm						
Resolution:	1 ppm						
Measurement range/		C ₂ H ₄ O / CO					
relative sensitivity	0 to 200 ppm C ₂ H ₄ O (ethylene oxide)	1.00	0.33				
	0 to 100 ppm H ₂ CCHCN (acrylonitrile)	0.15	2.20				
	0 to 300 ppm (CH ₃) ₂ CCH ₂ (isobutylene)	0.90	0.35				
	0 to 100 ppm CH ₃ COOC ₂ H ₃ (vinyl acetate)	1.10	0.30				
	0 to 300 ppm C₂H₅OH (ethanol)	0.55	0.60				
	0 to 200 ppm CH ₃ CHO (acetaldehyde)	0.35	0.95				
	0 to 200 ppm (C ₂ H ₅) ₂ O (diethyl ether)	0.75	0.45				
	0 to 100 ppm C ₂ H ₂ (ethine)	1.40	0.25				
Response time:	\leq 40 seconds (T ₅₀)						
Measurement accuracy							
Sensitivity:	\leq ± 20% of measured value						
Long-term drift, at 20°C (68°F)	<u> </u>						
Zero point:	≤ ± 5 ppm/year						
Sensitivity:	$\leq \pm$ 3% of measured value/month						
Warm-up time:	≤ 18 hours						
Ambient conditions							
Temperature:	(-20 to 50)°C (-4 to 122)°F						
Humidity:	(10 to 90)% RH						
Pressure:	(700 to 1,300) hPa						
Influence of temperature							
Zero point:	(-20 to 40)°C (-4 to 104)°F = ± 2 ppm						
Zero point:	(40 to 60)°C (104 to 140)°F = ± 0.5 ppm/K						
Sensitivity:	\leq ± 1% of measured value/K						
Influence of humidity							
Zero point:	No effect						
Sensitivity:	≤ ± 0.2% of measured value/% RH						


TECHNICAL SPECIFICATIONS


Test gas:	approx. 3 to 50 ppm C ₂ H ₄ O
	The Dräger Sensor XXS OV-A has a defined cross-sensitivity to
	carbon monoxide (CO). It can be calibrated with CO as a
	replacement for all of its target gases. This replacement calibration
	using CO can produce an additional measuring error of up to 20%.
	We recommend that devices are calibrated with the gas you intend to
	detect in actual operation. Calibration using the target gas is more
	accurate than replacement gas calibration. Using mixed gas please
	ensure the test gas does not contain NO, SO ₂ or H_2S . This causes a
	reading on the instrument's display due to cross sensitivities.

SPECIAL CHARACTERISTICS

The DrägerSensor[®] XXS OV-A has the same excellent characteristics as the DrägerSensor[®] XXS OV, but it has also been optimized for other organic gases and vapors. Just like the DrägerSensor[®] XXS OV, the DrägerSensor[®] XXS OV-A can be calibrated with CO as a replacement, although this may produce an additional measuring error of 20%. For more accurate measurements, we recommend calibrating using the target gas – i.e. the gas that you intend to detect in actual operation.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of ethylene oxide. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

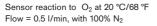
Gas/vapor	Chem. symbol	Concentration	Display in ppm C ₂ H ₄ O	
1-chloro-2, 3 epoxypropane	C ₂ H ₃ OCH ₂ Cl	25 ppm	≤ 10	
Acetic acid	CH₃COOH	100 ppm	No effect	
Ammonia	NH ₃	100 ppm	No effect	
Benzene	C ₆ H ₆	2,000 ppm	No effect	
Butadiene	CH ₂ CHCHCH ₂	50 ppm	≤ 75	
Carbon dioxide	CO ₂	30 Vol%	No effect	
Carbon monoxide	CO	100 ppm	≤ 33	
Chlorine	Cl ₂	10 ppm	No effect	
Chlorobenzene	C ₆ H ₅ Cl	200 ppm	No effect	
Dichloromethane	CH ₂ Cl ₂	1,000 ppm	No effect	
Dimethylformamide	HCON(CH ₃) ₂	100 ppm	No effect	
Ethene	C ₂ H ₄	50 ppm	≤ 45	
Ethyl acetate	CH ₃ COOC ₂ H ₅	100 ppm	No effect	
Formaldehyde	НСОН	40 ppm	≤ 25	
Hydrogen	H ₂	1,000 ppm	≤ 5	
Hydrogen chloride	HCI	20 ppm	≤ 3	
Hydrogen cyanide	HCN	20 ppm	≤ 8	
Hydrogen sulfide	H ₂ S	20 ppm	≤ 40	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤75	
Isopropanol	(H ₃ C) ₂ CHOH	250 ppm	≤ 110	
Methane	CH ₄	2 Vol%	No effect	
Methanol	CH₃OH	100 ppm	≤ 160	
Methyl methacrylate	H ₂ CC(CH ₃)COOCH ₃	60 ppm	≤ 25	
Methyl isobutyl ketone	(CH ₃) ₂ CHCH ₂ COCH ₃	500 ppm	No effect	
Nitrogen dioxide	NO ₂	20 ppm	≤1	
Nitrogen monoxide	NO	20 ppm	≤ 15	
Phosgene	COCl ₂	50 ppm	No effect	
Propene	C ₃ H ₆	50 ppm	≤ 35	
Propylene oxide	C ₃ H ₆ O	50 ppm	≤ 45	
Sulfur dioxide	SO ₂	20 ppm	≤ 9	
Styrene	C ₆ H ₅ CHCH ₂	35 ppm	≤ 35	
Tetrahydrofuran	C ₄ H8O	60 ppm	≤ 55	
Trichloroethylene	CHCICCI ₂	1,000 ppm	No effect	
Vinyl chloride	C ₂ H ₃ Cl	50 ppm	≤ 40	

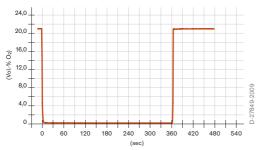
DrägerSensor[®] XXS OV-A

ST-1713-2005

DrägerSensor[®] XXS O₂ DrägerSensor[®] XXS E O₂

Order no. 68 10 881 68 12 211


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 3500	no	yes	3 years	> 5 years	no
Dräger Pac 5500	no	yes	3 years	> 5 years	no
Dräger Pac 7000	no	yes	3 years	> 5 years	no
Dräger Pac 7000 5Y	no	yes	5 years	> 5 years	no
Dräger X-am 2500	no	yes	3 years	> 5 years	no
Dräger X-am 5000	no	yes	3/5 years	> 5 years	no
Dräger X-am 5600	no	yes	3/5 years	> 5 years	no


MARKET SEGMENTS

Sewage, mining and tunneling, fumigation, biogas, hazmat, industrial gases.

Detection limit:	0.1 Vol%		
Resolution:	0.1 Vol%		
Measurement range:	0 to 25 Vol% O ₂ (oxygen)		
Response time:	≤ 10 seconds (T ₉₀)		
Measurement accuracy	-		
Sensitivity:	$\leq \pm 1\%$ of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 0.5 Vol%/year		
Sensitivity:	\leq ± 1% of measured value/year		
Warm-up time:	≤ 15 minutes		
Ambient conditions	-		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	- (700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	≤ ± 0.2 Vol%		
Sensitivity:	$\leq \pm 2\%$ of measured value		
Influence of humidity	-		
Zero point:	No effect		
Sensitivity:	\leq ± 0.1% of measured value/% RH		
Test gas:	approx. 12 to 20 Vol% O ₂ in N ₂		

DrägerSensor[®] XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have much longer life times than sensors that are consuming. An extremely fast response time of less than ten seconds produces a reliable warning of any lack or excess of oxygen.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O₂. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2

Gas/vapor	Chem. symbol	Concentration	Display in Vol% O ₂	
Ammonia	NH ₃	NH ₃ 500 ppm		
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4 ⁽⁻⁾	
Carbon monoxide	CO	0.5 Vol%	No effect	
Chlorine	Cl ₂	10 ppm	No effect	
Ethane	C ₂ H ₆	1.0 Vol%	≤ 0.2 ⁽⁻⁾	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethene	C ₂ H ₄	2 Vol%	≤ 2 ⁽⁻⁾	
Ethine	C ₂ H ₂	1 Vol%	≤ 0.5 ⁽⁻⁾	
Hydrogen	H ₂	1.6 Vol%	≤ 2.5 ⁽⁻⁾	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	100 ppm	No effect	
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	10 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	30 ppm	No effect	
Propane	C ₃ H ₈	2 Vol%	No effect	
Sulfur dioxide	SO ₂	20 ppm	No effect	

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS E O2

Gas/vapor	Chem. symbol	Concentration	Display in Vol% O ₂	
Ammonia	NH ₃	500 ppm	No effect	
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4(-)	
Carbon monoxide	CO	0.5 Vol%	No effect	
Chlorine	Cl ₂	10 ppm	No effect	
Ethane	C ₂ H ₆	1.0 Vol%	≤ 0.2 ⁽⁻⁾	
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	
Ethene	C ₂ H ₄	2 Vol%	≤ 2 ⁽⁻⁾	
Ethine	C ₂ H ₂	1 Vol%	≤ 0.5(-)	
Hydrogen	H ₂	1.6 Vol%	≤ 2.5 ⁽⁻⁾	
Hydrogen chloride	HCI	40 ppm	No effect	
Hydrogen cyanide	HCN	50 ppm	No effect	
Hydrogen sulfide	H ₂ S	100 ppm	No effect	
lsobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect	
Methane	CH ₄	10 Vol%	No effect	
Nitrogen dioxide	NO ₂	20 ppm	No effect	
Nitrogen monoxide	NO	30 ppm	No effect	
Propane	C ₃ H ₈	2 Vol%	No effect	
Sulfur dioxide	SO ₂	20 ppm	No effect	

DrägerSensor[®] XXS O2

DrägerSensor® XXS O₂ / CO LC

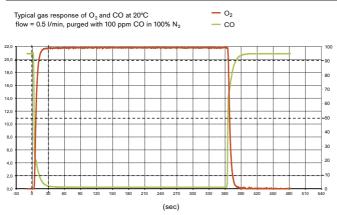
Order no. 68 13 275

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 3 years
Dräger X-am 5600	no	yes	1 year	> 3 years

Selective filter

Internal selective filter for CO.

Cross sensitivities to alcohol and acid gases (H₂S, SO₂) are eliminated.


The filter's service life can be calculated as follows: 25,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 25,000 ppm x hours / 10 ppm = 2,500 hours.

MARKET SEGMENTS

Gas suppliers, oxygen cylinders (diving), submarines, nuclear power plants

Detection limit:	1 Vol% O ₂ , 2 ppm CO		
Resolution:	1 Vol% O ₂ , 1 ppm CO		
Measurement range:	0 to 25 Vol% O ₂ (oxygen), 0 to 2000 ppm CO		
Response time:	\leq 15 seconds (T ₉₀)		
Measurement accuracy			
Sensitivity:	O_2 : $\leq \pm 1$ % of measured value, CO: $\leq \pm 2$ % of measured value		
Long-term drift, at 20°C (68°F)			
Zero point:	O_2 : $\leq \pm 0.5$ Vol% /year, CO: $\leq \pm 2$ ppm/year		
Sensitivity:	O_2 : $\leq \pm 1$ % of measured value/year, CO: $\leq \pm 3$ % of measured value/year		
Warm-up time:	O_2 : \leq 15 minutes, CO: \leq 30 minutes		
Ambient conditions	-		
Temperature:	(-40 to 50)°C (-40 to 122)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,300) hPa		
Influence of temperature	-		
Zero point:	$O_2: \le \pm 0.2 \text{ Vol\%}$		
	CO: ≤ ± 5 ppm		
Sensitivity:	O_2 : $\leq \pm 2$ % of measured value		
	CO: $\leq \pm 0.3$ % of measured value/K		
Influence of humidity	-		
Zero point:	No effect		
Sensitivity:	O_2 : $\leq \pm 0.1$ % of measured value/%r.h.		
	CO: $\leq \pm 0.02$ % of measured value/%r.h.		
Test gas:	approx. 12 to 20 Vol% O ₂		
	20 to 1800 ppm CO		

DrägerSensor[®] XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have much longer life times than sensors that are consuming. An extremely fast response time of less than ten seconds produces a reliable warning of any lack or excess of oxygen. The prominent feature of this sensor is the simultaneous measurement of % by vol. oxygen and ppm carbon monoxide in **one** sensor.

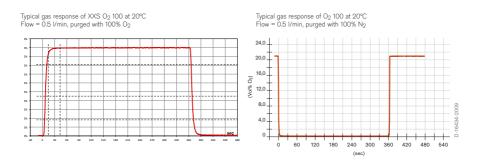
The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O₂. To be sure, please check if gas mixtures are present.

Gas/vapor	Chem. symbol	Concentration	Display in ppm O ₂	Display in ppm CO with selektive filter
Acetylene	C ₂ H ₂	1 Vol%	≤ 0.5 ⁽⁻⁾	≤ 200
Ammonia	NH ₃	100 ppm	No effect	No effect
Carbon dioxide	CO ₂	10 Vol%	≤ 0.4(-)	≤ 2
Carbon monoxide	CO	0.5 Vol%	No effect	
Chlorine	Cl ₂	20 ppm	No effect	No effect
Ethane	C ₂ H ₆	1 Vol%	≤ 0.2 ⁽⁻⁾	No effect
Ethanol	C ₂ H ₅ OH	250 ppm	No effect	No effect
Ethene	C ₂ H ₄	2 Vol%	≤ 2 ^(−)	≤ 250
Hydrogen	H ₂	1.6 Vol%	≤ 2.5 ⁽⁻⁾	≤ 200
Hydrogen chloride	HCI	40 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	100 ppm	No effect	No effect
Isobutylene	i-C ₄ H ₈	100 ppm	No effect	No effect
Methane	CH ₄	10 Vol%	No effect	No effect
Nitrogen dioxide	NO ₂	20 ppm	No effect	No effect
Nitrogen monoxide	NO	30 ppm	No effect	≤ 5
Propane	C ₃ H ₈	2 Vol%	No effect	No effect
Sufur dioxide	SO ₂	20 ppm	No effect	No effect

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2 100

DrägerSensor® XXS O₂ 100

Order no. 68 12 385


Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no

MARKET SEGMENTS

Gas suppliers, oxygen cylinders (diving), submarines, nuclear power plants

Detection limit:	0.5 Vol%		
Resolution:	0.5 Vol%		
Measurement range:	0 to 100 Vol% O ₂ (oxygen)		
Response time:	_ ≤ 5 seconds (T ₉₀)		
Measurement accuracy	-		
Sensitivity:	$\leq \pm 1\%$ of measured value		
Long-term drift, at 20°C (68°F)	-		
Zero point:	≤ ± 0.5 Vol%/year		
Sensitivity:	≤ ± 3% of measured value/year		
Warm-up time:	≤ 1 hour		
Ambient conditions	-		
Temperature:	(0 to 45)°C (32 to 113)°F		
Humidity:	(10 to 90)% RH		
Pressure:	(700 to 1,100) hPa		
Influence of temperature			
Zero point:	No effect		
Sensitivity:	$\leq \pm 5\%$ of measured value		
Influence of humidity	-		
Zero point:	No effect		
Sensitivity:	≤ ± 0.01% of measured value/% RH		
Test gas:	approx. 10 to 100 Vol% O ₂ in N ₂		
	-		

DrägerSensor[®] XXS oxygen sensors are lead-free, thus complying with Directive 2002/95/EC (RoHS). Because they are non-consuming sensors, they have much longer life times than sensors that are consuming. An extremely fast response time of less than ten seconds produces a reliable warning of any lack or excess of oxygen.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of O₂. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES DRÄGERSENSOR® XXS O2 100

Gas/vapor	oor Chem. symbol		Display in Vol% O ₂
Carbon dioxide	CO ₂	5 vol%	≤ 1 ^(−)
Chlorine	Cl ₂	20 ppm	No effect
Helium	He	50 vol%	≤ 1 ⁽⁻⁾
Hydrogen chloride	HCI	40 ppm	No effect
Hydrogen sulphide	H ₂ S	100 ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	10 vol%	No effect
Nitrogen dioxide	NO ₂	50 ppm	No effect
Nitrogen monoxide	NO	0.05 vol%	≤ 1 ^(−)
Propane	C ₃ H ₈	2 vol%	No effect
Sulphur dioxide	SO ₂	50 ppm	No effect

DrägerSensor® XXS Odorant

Order no. 68 12 535

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger X-am 5000	no	yes	1 year	> 2 years
Dräger X-am 5600	no	yes	1 year	> 2 years

Selective filter

B2X (68 12 424) - replaceable.

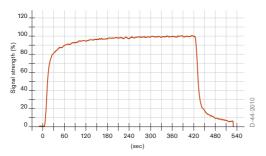
Cross sensitivities to hydrogen sulfide (H₂S) and sulfur dioxide (SO₂) are eliminated.

The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. The measurement value response time increases after the installation of the filter.

MARKET SEGMENTS

Gas supply companies

TECHNICAL SPECIFICATIONS


Detection limit:	1 ppm			
Resolution:	0.5 ppm			
Measurement range/	0 - 40 ppm THT (tetrahydrothiophene)	1.00		
relative sentitivity	0 - 40 ppm (CH ₃) ₃ CSH (tertbutyl mercaptane)			
	0 - 40 ppm C ₂ H ₅ CH(CH ₃)SH (secbutyl mercaptane)	2.00		
	0 - 40 ppm CH ₃ SH (methyl mercaptane)	4.00		
	0 - 40 ppm C ₂ H ₅ SH (ethyl mercaptane)	3.00		
	0 - 100 ppm (CH ₃) ₂ S (dimethyl sulfide)	1.80		
	0 - 40 ppm CH ₃ SSCH ₃ (dimethyl disulfide)	4.00		
Response time:				
Measurement accuracy	_			
Sensitivity:	≤ ± 3 % measured value/month			
Long-term drift, at 20°C (68°F)	-			
Zero point:	≤ ± 2 ppm/year			
Sensitivity:	≤ ± 2% measured value/month			
Warm-up time:	≤ 12 hours			
Ambient conditions	_			
Temperature*:	(-20 to 50)°C (-4 to 122) °F for THT, TBM, SBM			
	(5 to 40)°C (32 to 104) °F for MeM, EtM, DMS, DMDS			
Humidity*:	(10 to 90) % RH			
Pressure:	(700 to 1300) hPa			
Influence of temperature	_			
Zero point:	≤ ± 2 ppm			
Sensitivity:	\leq ± 10 % of measured value			
Influence of humidity				
Zero point:				
Sensitivity:	≤ ± 0,2 % of measured value/ RH			
Test gas:	THT test gas of approx. 2 to 18 ppm or an other of the target gases			
	(CH ₃) ₃ CSH, C ₂ H ₅ CH(CH ₃)SH, CH ₃ SH, C ₂ H ₅ SH, (CH ₃) ₂ S,	CH ₃ SSCH		

*Sudden temperature or humidity changes lead to dynamic effects (fluctuations).

These dynamic effects decrease within 2 to 3 minutes.

This sensor can be used to monitor seven different odorants in the ambient air or (for short periods) in natural gas. It is sufficient to calibrate the sensor using a THT test gas. By doing so, all of the other target gases are then automatically calibrated. In addition to a quick response time this Odorant sensor are highly selective. An internal, replaceable selective filter filters out most associated gases in natural gases like H_2S and SO_2 .

Typical gas response of Odorant at 20 °C flow = 0,5 I/min, purged with 10 ppm THT

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of NH₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

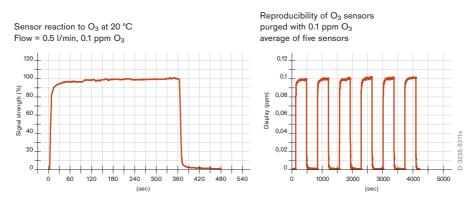
Gas/vapor	Chem. symbol	Concentration	Display in ppm THT without selective filter	Display in ppm THT with selective filter
Ammonia	NH ₃	200 ppm	No effect	No effect
Carbon dioxide	CO ₂	1.5 Vol%	No effect	No effect
Carbon monoxide	CO	125 ppm	No effect	No effect
Chlorine	Cl ₂	8 ppm	≤3 ppm ⁽⁻⁾	No effect
Ethene	C ₂ H ₄	50 ppm	No effect	No effect
Hydrogen	H ₂	1000 ppm	No effect	No effect
Hydrogen cyanide	HCN	50 ppm	No effect	No effect
Hydrogen sulfide	H ₂ S	10 ppm	≤30ppm	No effect
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤3.5 ppm	≤3.5 ppm
Methane	CH ₄	100 Vol%	No effect	No effect
Methanol	CH ₃ OH	200 ppm	≤5 ppm	≤5 ppm
Nitrogen dioxide	NO ₂	10 ppm	No effect	No effect
Nitrogen monoxide	NO	20 ppm	≤30 ppm	≤30 ppm
n-propyl mercaptan	C ₃ H ₇ SH	6 ppm	≤4 ppm	≤4 ppm
Phosphine	PH ₃	5 ppm	≤15 ppm	≤15 ppm
Sulfur dioxide	SO ₂	20 ppm	≤15 ppm	No effect

(-) Indicates negative deviation

DrägerSensor® XXS Ozone

Order no. 68 11 540

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 2 years	no
Dräger X-am 5600	no	yes	1 year	> 2 years	no


MARKET SEGMENTS

Ozone generator manufacturer, coal-fired power plants, water treatment (drinking and industrial water), food and beverage industry, swimming pools, pulp and paper industry, pharmaceutical and cosmetics industry

TECHNICAL SPECIFICATIONS

Detection limit:	0,02 ppm
Resolution:	0,01 ppm
Measurement range:	0 to 10 ppm O ₃ (Ozon)
Response time:	\leq 10 seconds (T ₅₀)
Measurement accuracy	
Sensitivity:	$\leq \pm 3$ % of measured value
Long-term drift, at 20°C (68°F)/	
50 % RH	
Zero point:	≤ ± 0.02 ppm/year
Sensitivity:	≤ ± 2 % of measured value/month
Warm-up time:	≤ 120 minutes
Ambient conditions	
Temperature:	(-20 to 50) °C (-4 to 122) °F
Humidity:	(15 to 80) % RH
Pressure:	(700 to 1300) hPa
Influence of temperature	
Zero point:	No effect
Sensitivity:	\leq ± 0.5 % of measured value/K
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.1 % of measured value/% RH
Test gas:	approx. 0.5 to 9 ppm O ₃
	5 ppm NO ₂
	The calibration and function test can be conducted both with the
	target gas O_3 , as well as with the replacement test gas NO_2 .
	Surrogate calibration with NO ₂ can lead to an additional measuring
	error of up to \pm 30 %. When conducting a function test with 5 ppm
	NO ₂ an indication of 2.8 \pm 0.8 ppm O ₃ is expected.

A fast response time and excellent repeatability are just two examples of this sensor's special characteristics. With a detection limit of 0.02 ppm and a resolution of 0.01 ppm, it is also optimally suited for limit value monitoring.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of Ozone. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm Ozone
Ammonia	NH ₃	30 ppm	no effect
Arsine	AsH ₃	0,5 ppm	no effect
Carbon dioxide	CO ₂	5 Vol%	no effect
Carbon monoxide	CO	2000 ppm	no effect
Chlorine	Cl ₂	1 ppm	≤ 0.8
Chlorine dioxide	CIO ₂	1 ppm	≤ 0.8
Ethane	C ₃ H ₆	0,1 Vol%	no effect
Ethanol	C ₂ H ₅ OH	250 ppm	no effect
Ethine	C_2H_2	100 ppm	no effect
Hydrazine	N ₂ H ₄	1 ppm	no effect
Hydrogen	H ₂	0,1 Vol%	no effect
Hydrogen chloride	HCI	40 ppm	no effect
Hydrogen cyanide	HCN	50 ppm	no effect
Hydrogen sulfide	H ₂ S	1 ppm	≤ 0.02 (-)
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	≤ 0.04
Methane	CH ₄	5 Vol%	no effect
Nitrogen dioxide	NO ₂	1 ppm	≈ 0.55
Nitrogen monoxide	NO	30 ppm	no effect
Phosphine	PH ₃	0,5 ppm	no effect
Propane	C ₃ H ₈	1 Vol%	no effect
Sulfur dioxide	SO ₂	1 ppm	≤ 0.06 (-)

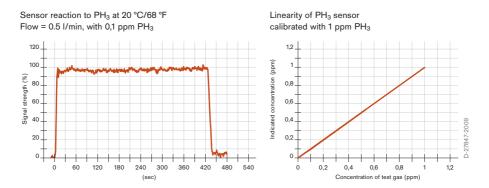
(-) Indicates negative deviation

DrägerSensor® XXS PH₃

Order no. 68 10 886

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger Pac 7000 ¹⁾	no	yes	1 year	> 3 years	no
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no

1) Selection of measuring gas in Pac 7000 not possible, only phosphine


MARKET SEGMENTS

Inorganic chemicals, fumigation, clearance measurements.

TECHNICAL SPECIFICATIONS

Detection limit:	0.02 ppm	
Resolution:	0.01 ppm	
Measurement range/	0 to 20 ppm PH ₃ (phosphine)	1.00
relative Sensitivity	0 to 20 ppm AsH ₃ (arsine)	0.90
	0 to 20 ppm B ₂ H ₆ (diborane)	0.35
	0 to 20 ppm SiH ₄ (silane)	0.85
	0 to 20 ppmH ₂ Se (selenium hydrogen)*	0.50
Response time:	≤ 10 seconds (T ₉₀)	
Measurement accuracy		
Sensitivity:	$\leq \pm 2\%$ of measured value	
Long-term drift, at 20°C (68°F)	
Zero point:	≤ ± 0.05 ppm/year	
Sensitivity:	$\leq \pm 2\%$ of measured value/month	
Warm-up time:	≤ 15 minutes	
Ambient conditions		
Temperature:	PH ₃ , AsH ₃ , SiH ₄ : (-20 to 50)°C (-4 to 122)°F	
	B ₂ H ₆ : (0 to 50)°C (32 to 122)°F	
Humidity:	(10 to 90)% RH	
Pressure:	(700 to 1,300) hPa	
Influence of temperature		
Zero point:	≤ ± 0.02 ppm	
Sensitivity:	≤ ± 5% of measured value	
Influence of humidity		
Zero point:	No effect	
Sensitivity:	≤ ± 0.05% of measured value/% RH	
Test gas:	approx. 0.05 to 18 ppm PH ₃	

This sensor's advantages include an extreme fast response time of less than 10 seconds for 90% of the measured signal, and its excellent linearity. It is suitable for monitoring concentrations of common hydrides such as phosphine, arsine, diborane, and silane in the ambient air.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of PH₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

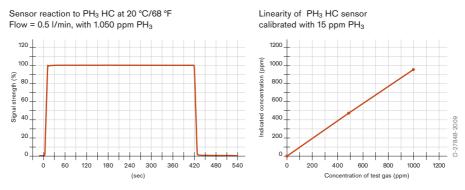
Gas/vapor	Chem. symbol	Concentration	Display
			in ppm PH ₃
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 2 ^(−)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	1,000 ppm	≤ 0.3
Hydrogen chloride	HCI	20 ppm	≤ 1
Hydrogen cyanide	HCN	60 ppm	≤ 5
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (-)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	≤1

(-) Indicates negative deviation

DrägerSensor[®] XXS PH₃ HC

Order no. 68 12 020

Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life	Selective filter
Dräger X-am 5000	no	yes	1 year	> 3 years	no
Dräger X-am 5600	no	yes	1 year	> 3 years	no


MARKET SEGMENTS

Inorganic chemicals, industry, fumigation.

TECHNICAL SPECIFICATIONS

Detection limit:	2 ppm
Resolution:	1 ppm
Measurement range:	0 to 2,000 ppm PH ₃ (phosphine)
Response time:	≤ 10 seconds (T ₉₀)
Measurement accuracy	-
Sensitivity:	$\leq \pm 2\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 2 ppm/year
Sensitivity:	$\leq \pm 2\%$ of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	-
Temperature:	(-20 to 50)°C (-4 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	No effect
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	
Zero point:	No effect
Sensitivity:	≤ ± 0.05% of measured value/% RH
Test gas:	approx. 4 to 1,800 ppm PH ₃

This sensor demonstrates excellent linearity across the whole measurement range even if calibrated in the lower reaches of that range, and it also provides a stable reading even at high concentrations over long periods of time.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of PH₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm PH ₃
Ammonia	NH ₃	50 ppm	No effect
Arsine	AsH ₃	5 ppm	≤ 5
Carbon dioxide	CO ₂	10 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	No effect
Diborane	B ₂ H ₆	5 ppm	≤ 3
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	No effect
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	No effect
Hydrogen cyanide	HCN	60 ppm	≤ 5
Hydrogen sulfide	H ₂ S	20 ppm	≤ 20
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH ₄	0.9 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 5 (−)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Sulfur dioxide	SO ₂	10 ppm	No effect
Silane	SiH ₄	5 ppm	≤ 5

(-) Indicates negative deviation

DrägerSensor® XXS SO₂

Order no. 68 10 885

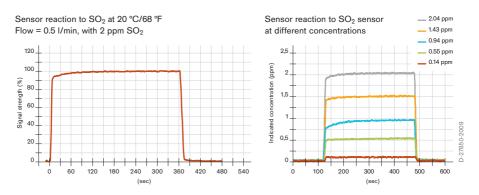
Used in	Plug & Play	Replaceable	Guaranty	Expected sensor life
Dräger Pac 7000	no	yes	1 year	> 2 years
Dräger X-am 2500	no	yes	1 year	> 2 years
Dräger X-am 5000	no	yes	1 year	> 2 years
Dräger X-am 5600	no	yes	1 year	> 2 years

Selective filter

KX (68 11 344) replaceable.

Cross sensitivities to hydrogen sulfide (H₂S) are eliminated.

The filter's service life can be calculated as follows: 1,000 ppm x hours of contaminant gas. Example: Given constant concentration of 10 ppm H_2S will be: Service life = 1,000 ppm x hours / 10 ppm = 100 hours. The measurement value response time increases after the installation of the filter.


MARKET SEGMENTS

Food industry, pest control, mining, oil and gas, petrochemical, paper manufacture, shipping, steel industry.

TECHNICAL SPECIFICATIONS

Detection limit:	0.1 ppm
Resolution:	0.1 ppm
Measurement range:	0 to 100 ppm SO ₂ (sulfur dioxide)
Response time:	≤ 15 seconds (T ₉₀)
Measurement accuracy	-
Sensitivity:	$\leq \pm 2\%$ of measured value
Long-term drift, at 20°C (68°F)	-
Zero point:	≤ ± 1 ppm/year
Sensitivity:	≤ ± 2% of measured value/month
Warm-up time:	≤ 15 minutes
Ambient conditions	-
Temperature:	(-30 to 50)°C (-22 to 122)°F
Humidity:	(10 to 90)% RH
Pressure:	(700 to 1,300) hPa
Influence of temperature	-
Zero point:	≤ ± 1 ppm
Sensitivity:	$\leq \pm 5\%$ of measured value
Influence of humidity	-
Zero point:	No effect
Sensitivity:	≤ ± 0.1% of measured value/% RH
Test gas:	approx. 2 to 90 ppm SO ₂

As well as a fast response time and excellent linearity, this sensor is highly selective if the selective filter is used. The KX selective filter (order no. 68 11 344) is an accessory for the DrägerSensor® XXS EC SO₂ and eliminates the sensor's cross-sensitivity to hydrogen sulfide. The filter has a lifetime of 1,000 ppm × hours, which means that at a hydrogen sulfide concentration of 1 ppm, it can be used for 1,000 hours.

The values shown in the following table are standard and apply to new sensors. The values maybe fluctuate by \pm 30%. The sensor may also be sensitive to additional gases (for more information, please contact Dräger). Gas mixtures may be displayed as the sum of all components. Gases with a negative cross sensitivity may displace an existing concentration of SO₃. To be sure, please check if gas mixtures are present.

RELEVANT CROSS-SENSITIVITIES

Gas/vapor	Chem. symbol	Concentration	Display in ppm SO ₂ without selective filter
Ammonia	NH ₃	50 ppm	No effect
Carbon dioxide	CO ₂	1.5 Vol%	No effect
Carbon monoxide	CO	200 ppm	No effect
Chlorine	Cl ₂	10 ppm	≤ 5 (-)
Ethanol	C ₂ H ₅ OH	250 ppm	No effect
Ethine	C ₂ H ₂	100 ppm	≤ 140
Hydrogen	H ₂	1,000 ppm	No effect
Hydrogen chloride	HCI	20 ppm	≤ 5
Hydrogen cyanide	HCN	20 ppm	≤ 10
Hydrogen sulfide	H ₂ S	20 ppm	≤ 60
Isobutylene	(CH ₃) ₂ CCH ₂	100 ppm	No effect
Methane	CH4	1 Vol%	No effect
Nitrogen dioxide	NO ₂	20 ppm	≤ 30 ^(−)
Nitrogen monoxide	NO	20 ppm	No effect
Ozone	O ₃	0.5 ppm	No effect
Phosphine	PH ₃	1 ppm	≤ 6

(-) Indicates negative deviation

DRÄGERSENSOR

Name and type of the sensor as well as the order number

Used as follows:	Indicates the devices suitable for use with this sensor
Plug & Play:	Indicates whether this sensor has plug & play functionality
Replaceable:	Indicates whether the sensor in the device can be replaced
Warranty:	Indicates the warranty period for the sensor

Limited manufacturer guarantee

Dräger grants a limited manufacturer guarantee for products in this handbook within the specified guarantee period under the following conditions. Dräger guarantees to the End Customer a product life time for the guarantee period indicated in this handbook, beginning with the first use of the product, but not longer than the guarantee period indicated plus one year after manufacture of the product. End Customer is the person or legal entity that acquired the new and unused product for its own use and not for resale.

Dräger's obligations and End Customer's sole and exclusive remedy under the Limited Manufacturer Guarantee is limited to the replacement of the defective product with a new product. For any valid claim hereunder (as determined by Dräger in its sole discretion), Dräger will replace the product free of charge with a new unit of the same type and properties.

The End Customer must provide written notice of any claim under the Limited Manufacturer Guarantee within thirty (30) days of when the claim becomes known or should have been known and in any event within the stated guarantee period. Such notice must be provided to either Dräger or the dealer where he acquired the product.

The Limited Manufacturer Guarantee is valid only if the End Customer (i) performed all maintenance measures recommended by the manufacturer (in the published Product Specifications or instructions for use) or required by applicable law and (ii) did not use the product in any manner which is outside its intended use as provided in the Product Specifications or instructions for use. This Limited Manufacturer Guarantee excludes any damage caused to the product (a) due to any act or omission of End Customer or any other third party, or (b) caused by transport, installation, modifications to, or improper use of the product.

DRÄGER MAKES NO GUARANTEE FOR THE PRODUCT OTHER THAN THE ONE SET FORTH HEREIN OR THAT WHICH MAY BE PROVIDED IN A SEPARATE WARRANTY OR GUARANTEE COVERING THE PRODUCT. THIS GUARANTEE DOES NOT LIMIT ANY STATU-TORY OR OTHER MANDATORY RIGHTS THE END CUSTOMER MAY BE ENTITLED TO.

The Limited Manufacturer Guarantee and its enforcement are subject to German substantive law to the exclusion of the UN Convention on the International Sale of Goods (CISG) and the conflict of laws rules. Place of performance is Lübeck, Germany. The courts of Lübeck, Germany shall have exclusive jurisdiction.

Selective filter: Indicates whether this sensor has a selective filter, which could be a replaceable one. The filters eliminate the cross sensitivities of the indicated gases. Each filter has a specified service life calculated based on exposed ppm and duration.

MARKET SEGMENTS

A list of typical market segments in which this sensor is used. This list does not claim to be complete.

TECHNICAL DATA

Indicates the technical data for this sensor.

SPECIAL FEATURES

Description of the features that characterize this sensor and thus make it particularly interesting for various applications.

RELEVANT CROSS-SENSITIVITIES

Selection of gases, which may affect the sensor in typical applications. The effect of the filter is depicted in a separate column for sensors with selective filter.

TECHNICAL DATA

Detection limit:	Indicates the smallest concentration other than zero depicted in the display. For example: At a detection limit of 2 ppm, the value 2 ppm is depicted in the display as the first concentration. Concentrations lower than 2 ppm are depicted as 0 ppm.
Resolution:	Indicates the concentration increments of the display. For example: With a detection limit of 2 ppm and a resolution of 1 ppm, the concentrations are depicted in the following increments: 2 ppm / 3 ppm / 4 ppm
Measurement Range:	Indicates the maximum measuring ranges of the sensor. All gases/ vapors with their ranges are indicated if a sensor can be used for different gases and vapors.
Relative sensitivity:	Some sensors are suitable for the measurement of different target gases. The various cross sensitivities of these target gases are in general stated in the sensor information under the item measurement range. The sensitivity factor refers to a defined gas and is called relative sensitivity. With these sensitivity factors interferences (cross sensitivities) or calibration factors can be calculated. Example XXS OV: The defined gas for an XXS OV sensor is ethylene oxide (EO). The relative sensitivity of carbon monoxide (CO) related to EO is 0.33. Meaning, an XXS OV sensor calibrated to EO will give a reading of 33 ppm when exposed to 100 ppm CO. The given values are guiding values and apply to new sensors. Gas mixtures may be displayed as the sum. Therefore, it should be exami- ned whether gas mixtures are present. Gases with a negative sensiti- vity may offset the positive display of the calibration gas.
Response time:	Typically, the times listed here are T ₅₀ or T ₉₀ at 20°C (68°F), 50% r.h., 1013 mbar. These times indicate when 50 % or 90 % of the final signal has been reached.
Measurement accuracy:	The data presented here relate to the sensitivity: For example, if a measuring accuracy of $\leq \pm 3$ ppm of the measured value is indicated for the sensitivity, then the following can be said about the measuring accuracy: The concentration is between 97 and 103 ppm if 100 ppm is displayed.
Long-term drift:	This information indicates the typical drift of the sensor in the zero point and in the sensitivity across a longer period. This data may refer to a month or a year. The long-term drift data of ≤ ± 0.2 ppm/year at 20° C (68°F) states that this sensor drifts max. ≤ ±2 ppm per year. A value for the long-term drift of the sensitivity of ≤ ± 2 ppm/month, indicates that after two months with a display of 100 ppm, the gas concentration may be between 96 and 104 ppm at maximum.
Warm-up time:	The warm-up time indicates the amount of time needed before a newly installed sensor or a sensor, which was without electricity for a period of time and then is powered up again, can be calibrated. However, the sensor may be ready for use after only a few minutes. In this case, there may be a higher rate of measurement errors.

A 1 1 1 111	
Ambient conditions:	Indicates the temperature, humidity and pressure range in which the sensor may be used. The indicated corrections do not apply with
	measurements outside of the permissible ambient conditions. Dräger is
	pleased to offer you additional advice on how to meet your specific
	requirements. Please contact the respective branch office if you require
	assistance. The addresses are listed on the rear cover page of this manual
Influence of temperature:	The effect of temperature must be considered when the measuremen
	temperature deviates from the temperature during the calibration.
	Example 1: Temperature effect on the sensitivity amounts to $\leq \pm 5$ %
	of the measured value. This means that the max. deviation across the
	entire temperature range of the sensor (typically - 40 to 50°C or - 40
	to 122°F) is expected to be $\leq \pm 5$ %. At an ambient temperature of, fo
	example, - 10° C (14°F) and a displayed value of 100 ppm, the gas
	concentration may be between 95 and 105 ppm at maximum. The
	temperature difference between the temperature of the measuremen
	and the temperature of the calibration must be taken into account with
	some sensors.
	Example 2: The effect of temperature on the sensitivity is $\leq \pm 0.5$ %
	of the measured value / K. The sensor was calibrated at 25°C (77°F)
	the measurement is taken at an ambient temperature of 35°C (95°F)
	The temperature difference is then 10°C (14°F) or 10 K. This yields the
	following calculation: $10 \times 0.5\% = 5\%$
	With an ambient temperature of 35°C (95°F) and a displayed value o
	100 ppm, the gas concentration is between 95 and 105 ppm at maximum
Influence of humidity:	The effects of humidity must be considered if the humidity during
	measurement deviates from the calibration humidity.
	Example 1: The effect of humidity on the sensitivity is $\leq \pm 0.5$ % of the
	measured value. This means, that a deviation of maximum \leq ± 5 % ove
	the entire humidity operating range (typically (10 to 90)% RH) must be
	taken into account.
	With an ambient humidity of 50 %, for example, and a displayed value
	of 100 ppm, the gas concentration may be between 95 and 105 ppm
	at maximum. The humidity difference between the humidity of the
	measurement and the humidity of the calibration must be taken into
	account with some sensors.
	Example 2: The effect of humidity on the sensitivity is $\leq \pm 0.02$ %
	of the measured value / % rel. humidity. The sensor was calibrated
	at 0% rel. humidity, the measurement is taken at an ambient rel
	humidity of 50 %. The difference of the rel. humidity is then 50 %. This
	yields the following calculation: 50 x 0.02 % = 1 %
	With an ambient humidity of 50 % and a displayed value of 100 ppm
	the gas concentration is between 99 and 101 ppm at maximum.
Test gas:	Recommended test gas concentration for calibrating the sensor.

5 Accessories

5.1 Introduction

Dräger offers a range of accessories to ensure that you can make optimal use of your gas detector for your specific application. We also help you maintain your device and make sure that it is kept ready for operation.

Safety

Measuring devices that are not operating correctly do not provide protection and can lead to accidents. Testing these devices (bump test) is the only way to guarantee reliable and correct measurement of and warning against gas hazards.

Enhanced functionality

Using the correct accessories can enhance the functionality of gas detectors. For example, a personal detection device can be converted into a leak detection or clearance measurement device in confined spaces by using an external pump, probe or an extension hose. It is important that you choose the accessory that is best suited for your application.

Configuration/Documentation/Archiving

Setting the parameters of the gas detectors always becomes important when limit values change or if the gas detector is used for another application. This is where we provide after-sales support: and the PC software helps you with the configuration. The documentation is also extremely important: Who performed which test and what was the result? Where have the calibration certificates been filed?

Our solutions also provide support in this area.

Evaluation

A data logger collects numerous measured values and results – but the data remains idle until it is evaluated. That's why we help you prepare the data: this includes graphic displays and easy navigation in the data logger – as well as automatic reports, e.g. if an alarm is triggered or a calibration interval is exceeded.

Solutions to make sure that you always stay on top of your process.

5.2 The bump test

Anyone looking for a definition of the bump test will struggle to find a clear and straightforward explanation. This important test is performed in a variety of different ways in practice. When designing the test system you need to ask: what significance do "I" expect from the bump test?

- a) Does the device need to show that it works in principle and that "gas" is reaching the sensors to be checked (qualitative finding)?
- b) Or do I need a quantitative finding, i.e. whether the device is still providing measurements that are "accurate enough"?

Dräger provides two different categories of the bump test:

The quick bump test

The quick bump test checks whether the relevant sensor exceeds the first alarm threshold after applying an "appropriate" test gas. Additional safety measures are available (e.g. the sensor may need to be above the alarm threshold for a certain amount of time) but, in principle, the test threshold is the alarm threshold configured in the device.

A test gas is "appropriate" if it is not "too far" above the first alarm threshold, as this would otherwise mean that the gas test would only fail after a dramatic loss of sensitivity. A limit must also be maintained in the event of a more qualitative test. Dräger provides recommended limits for these tests.

The extended bump test

The advanced bump test checks whether the tested sensor complies with the test gas concentration within a tolerance window after an "appropriate" test gas is applied. This test includes a quantitative finding and increases safety.

The sensor also has an impact on whether the test gas is "appropriate". A test close to the alarm thresholds is often advisable, but many sensors are also linear so that the permitted range is much larger than for the quick test, as the "test threshold" is always adjusted. This allows the accuracy to be determined at almost any point within the measuring range. However, the selection of a range that corresponds to the measuring task is advisable. Dräger also provides recommended ranges for the permitted test gas concentrations.

The CC-Vision software lists the permitted calibration ranges for every individual sensor (and every selected test gas) for both the quick and the extended bump test. In many cases the gas detector – or even the Dräger X-dock – does not accept concentrations outside this range.

	Quick bump test	Extended bump test
Test duration		•
Gas consumption	••	•
Behaviour for "special gases" (high adsorption)	•	•
Check for accuracy / residual sensitivity	•	••
Behaviour when applying the incorrect gas (e.g. incorrect	•	••
concentration set or undefined cross-sensitivity, as the incorrect		
test gas cylinder is connected; residual gas in the hose, etc.)		
Permitted test gas concentration range	•	••
(minimum and maximum accepted concentration)		
Testing below A1 possible	•	••

Above-average

The following table helps you select the appropriate bump test for you:

5.3 Devices for calibration and functional testing

Inadequate

Portable gas detectors are used for continuous measurement and support you in every application. As a result, it is important to check the devices for operational readiness by applying test gas and evaluating the result. This not only ensures that the sensors themselves are ready for measurement, but that the access to the sensor is not blocked by dust or dirt. An calibration should also take place at regular intervals, as factors such as environmental influences or ageing can have an impact on the sensor sensitivity.

National guidelines also prescribe bump tests and calibrations, such as information sheet TO21 (gas warning devices for toxic gases/vapours) or TO23 (gas warning devices for explosion protection) by the "Rohstoffe und chemische Industrie" (raw materials and chemicals industry) liability insurance association (BG RCI) in Germany. The applicable standard for the member states of the European Union, EN 60079-29-2 "Gas detectors – Selection, installation, use and maintenance of detectors for flammable gases and oxygen", also prescribes the implementation of a sensitivity test directly prior to use (international: IEC 60079-29-2).

5.4 Manual bump test

ST-5006-2005

The simplest and most cost-effective option for testing the function of a portable gas detector is to perform a manual bump test with test gas. This only requires an appropriate test gas cylinder, a corresponding pressure reducer and a calibration adapter for the specific device. Briefly applying the test gas to the sensors triggers the instrument alarm. Make sure that an adequate test gas concentration is applied! Depending on the type of device, it can be calibrated – in the same arrangement – using the device software or a PC with the Dräger CC-Vision software. This software allows the user to configure and calibrate the devices in line with their individual requirements.

5.5 The Dräger Bump Test Station

The Dräger Bump Test Station facilitates the performance of an everyday bump test, as the test is evaluated by the devices themselves and the test gas is automatically applied on insertion. In addition, most devices are able to automatically identify the station and switch to bump test mode without having to perform any manual activities.

Dräger devices Dräger Pac 3500, 5500 and 7000, Dräger X-am 2500, 5000 and 5600 as well as the X-am 7000 are supported. The Dräger Bump Test Station does not require a power supply – the evaluation itself is performed by the gas detector. The documentation also takes place in the gas detector, within the data logger. The device must be configured for the type of bump test and the required test gas concentration.

The sensors' rapid response time ensures a quick test in under 12 seconds in some cases. The lower gas consumption and time saving reduce the operating costs.

5.6 Dräger X-dock – more than just a test station

The Dräger X-dock automatic test and calibration station is the modular solution for the daily bump test as well as a workshop and fleet management solution.

The X-dock can be operated independently as an individual station – a PC is <u>not</u> required. This gives you the benefit of a range of options at every location: the X-dock can perform quick or advanced bump tests or even perform calibrations, readout the data logger and check the gas detector's alarm elements or the sensors' response times. These individual test steps can be configured – and the three most important objectives are always ensured:

1. Ease of use:

The simplest test: insert and close the lid - the rest takes place automatically.

2. Short test time:

An advanced pneumatics system provides extremely short test times.

3. Low gas consumption:

The short test time as well as the gas flow, which has been reduced to 300ml/min, reduces the gas consumption significantly, which also helps to reduce costs. In addition, the X-dock immediately switches off valves once a test gas is no longer required for a certain test step and the device has completed the test.

This system combines ease of use with low operating costs – but with full documentation. Everything that the X-dock performs is stored in the internal database. If the station is used as an individual station, the results can be exported as a PDF or printed on any conventional postscript-enabled printer.

This means that the system is scalable: whether you use one or ten modules on a master is up to you.

The Dräger X-dock independently detects the test gases that are required. The touchscreen can be used to program the connected gas cylinders – the X-dock station performs everything else automatically. Up to six test gas cylinders can be connected to a master and these test gases can themselves consist of gas mixtures. This covers almost every application.

However, the highlight is a possible expansion: X-dock stations can be connected to a network. The data is synchronised and stored on a server.

The X-dock Manager PC software makes data evaluation as easy as pie:

Which calibrations are coming up or are even overdue? Has a device not been checked? Has an alarm been triggered in operation and when are the X-dock stations engaged? Questions that the X-dock Manager conveniently answers.

If you still need more, the X-dock also provides a range of special functions for your application: for example, the X-dock can be used as a charging station for X-am 125 devices – this function is ideally supplemented by the test planner function, which performs the set test on a predetermined schedule (e.g. daily).

Take the time to find out what the Dräger X-dock can do for you!

Geräte	Dräger Bump Test Station	Dräger X-dock Station	Basic test with gas	Dräger CC-Vision software
Dräger Pac 3500/5500/7000				•
Dräger X-am 2500/5000/5600				
Dräger X-am 5100				
Dräger X-am 7000				•

5.7 Test gases and accessories

Test gases are an essential part of the bump test. Only an **appropriate** test gas can verify a gas detector's functionality and it is just as important for calibration.

A high standard of quality is required as test gases are a key element of the safety chain. Dräger test gases are produced pursuant to ISO 9001 and guarantee a globally valid quality standard. Single as well as mixed gases are available.

Once the test gas cylinders are completely empty they can be transported to a scrap metal facility and disposed of in an environmentally friendly manner, which means that customers do not have to pay any rental or transport costs.

5.8 Pressure reducer

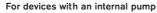
The history of Dräger started with a patent for a pressure reducer – and every system that needs a test gas cylinder also needs a pressure reducer. Gases are pressurised so that the cylinder can hold more than its actual volume. This pressure now needs to be reduced for the application (e.g. the bump test) – this requires a pressure reducer.

Some pressure reducers reduce the pressure to a set level (e.g. 0.5 bar). The flow rate is then determined by the line resistances or any flow control valves.

There are also pressure reducers that regulate a fixed volume flow – e.g. 0.5 l/min. In this case, the pressure is adapted according to the resistance in order to ensure a constant volume flow. The correct pressure reducer for the system needs to be selected. Pressure reducers can naturally also be reused. They have a screw thread and can be adapted from one test gas cylinder to the next at any time.

Trigger control valve

APPLICATION


For the quick functional test before devices are used Manually pressing the trigger briefly applies test gas to the gas detector's sensors. Raising the trigger fixes the control valve in the open position and provides a continuous gas flow of 0.5 I/min.

For devices without an internal pump

Standard pressure reducer with thumbwheel to manually open and close the gas outlet. Volume flow: 0.5 l/min.

Basic valve

4806-2005

The pump's suction automatically opens the valve and can be used with devices with internal pumps. Volume flow: 0.5 l/min.

On-demand control valve

Stainless steel valve

APPLICATION

Special stainless steel valve for aggressive gases This stainless steel valve is ideal for reactive gases, such as chlorine or ammonia. The valve is opened and closed using a thumbwheel.

Fixed pressure control valve

Fixed pressure control valve

5.9 Pumps

Dräger X-am 7000 with pump adapter

In certain situations confined spaces need to be checked and cleared before they can be accessed. In this case, the ambient air from the room needs to be fed into the measuring device while ensuring that the person using the device does not have to access the space. Pumps equipped with a hose and probe are ideal for performing a measurement from a safe distance.

A pump is also required for leak detection, in order to connect the corresponding probe to the gas detector.

The Dräger X-am 7000 can be equipped with an integrated highperformance pump.

Constant pressure control valve for Dräger X-dock

With a pre-set pressure of 0.5 bar, specifically designed for the use with the Dräger X-dock Station. Available as a nickel-plated version or in stainless steel for reactive gases, such as chlorine or ammonia.

Constant pressure control valve with flowstop for Dräger X-dock With a pre-set pressure of 0.5 bar, specifically designed for the use with the Dräger X-dock Station. The installed flowstop prevents gas from accidentally escaping from the cylinder.

Dräger X-am 1/2/5000 pump In both cases, a corresponding adapter ensures that the device can be used as either a diffusion unit or a pump unit. I.e. you can use the device in diffusion mode (pump-free), even if you decide on an internal pump.

The external Dräger X-am 1/2/5x00 pump is available for the Dräger X-am 2500/5000 and 5600 product family. When the detector is inserted the pumping function starts automatically and initiates a flow test. The pump is immediately ready for operation following a successful flow test and is able to be operated with a hose up to 30 m long. Performing a flow test prior to every commissioning ensures the safe and reliable use of the pump. An easily replaceable dust and water

filter protects the pump and the device sensors from contamination – because, as a general rule: anyone working with a pump and hose should use a water filter!

5.10 Probes

Pump-supporting measurements without probes are almost unimaginable as various tasks need to be fulfilled depending on the application.

Is selective suction required or does it need to be within a certain area? Is a rigid connection adequate or does the probe need to have a flexible neck? Is a telescopic probe required? How big is the opening available for the measurement?

We have the right probe in all of these cases.

ORDER NUMBER	NAME	LENGT	LENGTH MATERIAL	FOR USE WITH GAS DETECTION DEVICES	USES
83 17 188	Bar probe 400	D.25398.2009	Stainless-steel probe with an external diameter of 10 mm (0.4 in.).	X-am 7000 X-am 2500 X-am 5000/5600	This probe is particularly durable. It is used for applications such as pre entry measurements in gas-filled containers, where it is necessary to obtain air samples throuch closed seals.
64 08 160	GL probe (German Lloyd probe)	D-32333-3000	Stainless-steel probe with an external diameter of 6 mm (0.24 in.).	X-am 7000 X-am 2500 X-am 5000/5600	Measurements in hatchways on ships.
83 16 531	Leakage probe 70	23 ft u 21 - 14996-2008	Flexible metal tube with an integrated Viton hose. External diameter of 10 mm (0.4 in.) Tested for gases of the group IIC in the areas Zone 0 and Zone 1, test report BVS PB 18/13 (DEKRA/Exam).	X-am 7000 X-am 2500 X-am 5000/5600	This flexible probe can measure "round corners," making it especially useful for difficult to reach places where there is a risk of explosion.
83 16 532	Bar probe 90	00 cm 0.0 cm 0.0 cm 0.0 cm	Probe made from carbon-fiber reinforced plastic with an external diameter of 8 mm (0.3 in.).	X-am 7000 X-am 2500 X-am 5000/5600	With its fixed length, this probe can be used for any applications involving distances of 90 cm (2.9 ft.) such as confined space entry.
83 16 530	Telescopic probe 100	1 1 21-14365-5008	Metal probe with an integrated Viton hose. External diameter of 12 mm (0.47 in.). Tested for gases of the group IIC in the areas Zone 0 and Zone 1, test report BVS PB 18/13 (DEKRA/Exam).	X-am 7000 X-am 2500 X-am 5000/5600	Extendable to lengths of up to 1 m (3.3 ft.). Suitable for areas where there is a risk of explosion.

ORDER NUMBER	NAME	LENGT	LENGTH MATERIAL	FOR USE WITH GAS DETECTION DEVICES	USES
83 16 533	Telescopic probe	1.5 m	1	X-am 7000	Extendable to lengths of up to
	ES 150	4.9 ft.	integrated Viton hose.	X-am 2500	1.5 m (4.9 ft.). Suitable for areas
		V	External diameter of 12 mm (0.5 in.).	X-am 5000/5600	where there is a risk of explosion;
	00	80	Tested for gases of the group IIC		solvent-resistant.
			in the areas Zone 0 and Zone 1,		
	201.12	S1-1499	test report BVS PB 18/13 (DEKRA/Exam).		
64 08 239	Measurement	1.5 m	Aluminum probe with with an	X-am 7000	With its fixed length, this probe
	probe	4.9 ft.	integrated PVC hose.	X-am 2500	can be used for any applications
			External diameter of 10 mm	X-am 5000/5600	involving distances of 1.5 m (4.9 ft.).
	0	6	(0.4 in.).		The tip of the probe is perforated
		5-200			for the last 15 cm (0.5 ft), enabling
		6897			sampling in media such as grain
		5-0 J			sacks and dry bulk solids.
68 01 954	Plugable	2 m	Plastic probe with an	X-am 7000	A probe 2 m (6.6 ft.) in length
	telescopic probe	6.6 ft.	integrated rubber hose.	X-am 2500	whose plug-in system makes it
	dl	80	External diameter of 13 mm	X-am 5000/5600	compact and easy to carry.
	1111000	21-14968-200	(0.5 in.).		Universal usage.
83 18 371	Float probe	5 D	Probe: Polycarbonate.	X-am 7000	For measurements in drainage
	incl. hose	16.4 ft.	. Viton hose with external diameter	X-am 2500	and sewage systems.
	5000 F060F	0002-16001-50002	of 8 mm (0.3 in.) + water and dust filter.	X-am 5000/5600	Solvent-resistant.
68 07 097	- Float probe	-10 m	Probe: Polycarbonate.	X-am 7000	Electrically conductive.
	,	8		X-am 2500	
	UU k	6	(CR) with natural rubber (NR)]	X-am 5000/5600	
		((0.1038)	with an external diameter		

5.11 Hoses

An extension hose, together with pumps, is always required if the air quality has to be assessed from distant measuring points, such as at the base of a silo, a cargo chamber on a ship, or a sewer. Two points must be considered: the hose length and the hose material. The pumping capacity is critical when determining the length of the hose. The pumping capacity of the Dräger X-am 1/2/5x00 pump is designed for 30 m and for 45 m for the X-am 7000.

The adsorption behaviour of the gases to be measured on the surface of the hose must be considered when selecting the hose material.

Three different hose materials have proven themselves in practice and are suitable for certain gas families. The following table will help you choose the hose that is right for you.

|--|

	Fluororubber 1203150	Tygon 8320766 E-3603	Rubber 1180681	Tygon with internal PTFE coating 4594679	
Material	FKM	PVC	CR-NR DWN 2715	PVC with PTFE	
Chemical	Fluororubber	Polyvinyl chloride	Polychloroprene	Tygon shell and	
name			(CR) with natural	interior polytetra-	
			rubber (NR)	fluoroethylene	
				(PTFE) coating	
Inner Ø	5 mm	5 mm	5 mm	5 mm	
Outer Ø	8 mm	8 mm	9 mm	8 mm	
Hardness	75 Shore A	55 Shore A	60 Shore A		
Colour	Black	Transparent	Black	Transparent	
Benefit	Suitable for	Transparent	Conducts	Specifically for	
	vapours		electricity	aggressive gases	
				such as chlorine	
Operating range	-15 °C to + 200 °C	-46°C to + 74 °C	-30°C to +134°C	-36°C to 74°C	
Use in explosion-	Suitable		Suitable		
hazard area					

TEST RESULTS AND MEASUREMENT RECOMMENDATIONS

	GAS	FORMULA	الله الله الله الله الله الله الله الله		DISF	g time PLAY Tygon 03	Gassing / Rinsing time DISPLAY Antistatic (rubber) hose	Gassing / Gassing / DISPLAY SE 200, PTFE lined Tygon hose 4594679
			_					
	Carbon dioxide	CO ₂	1		t		1	
	Carbon monoxide	СО	•		•		•	+
	Oxygen	O ₂	•		•		•	•
	Nitrogen dioxide	NO ₂	•			•	•	•
	Chlorine	Cl ₂			• •	• •		
	Hydrogen sulfide	H ₂ S	•		•		•	•
	Phosgene	COCl ₂				•	•	•
	Hydrogen	HCN		•		•	•	•
	cyanide							
	Phosphine	PH ₃			•		•	•
	Ammonia	NH ₃		-			•	•
	Nitrogen	NO			•		•	•
	Sulfur	SO ₂		•		•		•
Volatile hydrocarbons or gases Low-volatility hydrocarbons or gases	Methane -		+		•			•
	Hexane		_					
	Toluene	$C_6H_5CH_3$	_	•	• •	• •		
	Octane	C ₈ H ₁₈	_	•	<u> </u>	• •		
Non-volatile hydrocarbons or gases	Acetic acid	CH ₃ COOH	_	•	• •	• •	• • •	
	n-Nonane	C_9H_{20}	_		<u> </u>	• •	+ + + +	
	Styrene	C ₆ H ₅ CH=CH ₂			• •	• •		
suitable t ₉₀ tin	ne	limited suitable, long too > 5 min.	er rinsing	ı time,	not suita	able		

t₉₀ > 5 min.

5.12 Dräger CC-Vision Basic

CC stands for calibration and configuration. It describes the two main functions of this PC software. This software ensures the professional configuration and calibration of Dräger gas detectors as well as the documentation of the results.

Whether it be alarm thresholds, turn off behaviour, or measured and calibration gas, CC-Vision Basic helps you configure your gas detectors – even if you want to duplicate configurations and transfer these to other devices.

The device functions are clearly displayed on the screen in a tree structure and allow to set the device parameters quickly and individually and to calibrate the sensors.

Anyone who has purchased a Dräger X-dock and the X-dock Manager will naturally want to use them to manage all of their devices. However, the CC-Vision Basic is not a contradiction in terms. The CC-Vision Basic sets the parameters of individual devices, while the X-dock sets the parameters of entire groups of devices based on the specifications provided by the CC-Vision Basic.

The Dräger X-dock and the Dräger CC-Vision Basic work in perfect symbiosis to provide even better support for your processes.

Test it for yourself and download CC-Vision Basic free of charge from: www.draeger.com/software

5.13 Dräger GasVision

The gas detector's data logger provides a wealth of information – but the trick is to find the relevant information and process the data accordingly.

This is where the Dräger GasVision software provides support. The data logger provides both a graphic AND tabular display to conveniently navigate through the data.

- · Zoom into certain areas to look at these in detail
- Display the TWA, average value, MAX and MIN values for marked areas
- · Export data to Excel
- · Directly display the measured data of a connected device

This visualisation of the data allows hazardous situations to be detected and appropriate measures to be introduced.

Concluding remark

This chapter only covers part of the extensive accessories available. In addition to pump, calibration and communication accessories, a large range of pockets and cases (with or without equipment) and various power packs complement the group of accessories that can be adapted to the relevant application. The services, such as maintenance contracts, full service maintenance contracts and the all-inclusive worry-free package or training, such as service technician training, round out the gas detector technology area. Our branch employees are more than happy to provide advice on these products and services. CORPORATE HEADQUARTERS Drägerwerk AG & Co. KGaA Moislinger Allee 53–55 23558 Lübeck, Germany

www.draeger.com

Locate your Regional Sales Representative at: www.draeger.com/contact

